Large time decay for the magnetohydrodynamics equations in Sobolev-Gevrey spaces

被引:6
|
作者
Guterres, Robert [1 ]
Melo, Wilberclay G. [2 ]
Nunes, Juliana [3 ]
Perusato, Cilon [4 ]
机构
[1] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, BR-91509900 Porto Alegre, RS, Brazil
[2] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[3] Univ Fed Rio Grande, Inst Matemat Estat & Fis, BR-96203900 Rio Grande, RS, Brazil
[4] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 192卷 / 03期
关键词
Magnetohydrodynamics equations; Sobolev-Gevrey spaces; Large time decay; BLOW-UP CRITERION; FLUID;
D O I
10.1007/s00605-020-01415-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our paper shows that global solutions (u,b)is an element of C([0,infinity); H-alpha,sigma(s)(R3)), of the Magnetohydrodynamics equations present the following asymptotic behavior: lim(t ->infinity) t(s/2) parallel to (u, b)(t)parallel to(2)((H)) (over dota,sigma (R3)) = 0, where a > 0, sigma > 1, s > 1/2 and s not equal 3/2. It is important to point out that the assumption related to existence of global solutions for this same system can be made since the existence and uniqueness of local solutions were recently established; more precisely, it has been proved that there is a time T>0 such that (u,b)is an element of C([0,T]; H-a,sigma(s)(R-3)).
引用
收藏
页码:591 / 613
页数:23
相关论文
共 50 条