Comparison of some machine learning and statistical algorithms for classification and prediction of human cancer type

被引:0
作者
Shamsaei, Behrouz [1 ]
Gao, Cuilan [2 ]
机构
[1] Univ Tennessee, Dept Computat Engn, Chattanooga, TN 37403 USA
[2] Univ Tennessee, Dept Math, Chattanooga, TN USA
来源
2016 3RD IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS | 2016年
关键词
Anova; Logistic regression; Artificial neural networks; Gene expression value; Human cancer type; Pediatric medulloblastoma; CROSS-SPECIES GENOMICS; EXPRESSION; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Use of gene expression profile of an animal under a certain disease gives pre-clinical insights for the potential efficacy of novel drugs. Selection of an animal model, accurately resembling the human disease, profoundly reduces the research cost in resources and time. Here, a statistical procedure based on analysis of variance (ANOVA) defined in [1] is investigated to select the animal model that most accurately mimics the human disease in terms of genome-wide gene expression. Two other commonly used data fitting algorithms in machine learning, logistic regression and artificial neural networks are examined and analyzed for the same data set. Implementing procedure of each of these algorithms is discussed and computational cost and advantage and drawback of each algorithm is scrutinized for prediction of pediatric Medulloblastoma cancer type.
引用
收藏
页码:296 / 299
页数:4
相关论文
共 50 条
[21]   Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Sawazaki-Calone, Iris ;
Kowalski, Luiz Paulo ;
Haglund, Caj ;
Coletta, Ricardo D. ;
Makitie, Antti A. ;
Salo, Tuula ;
Almangush, Alhadi ;
Leivo, Ilmo .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 136
[23]   Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers [J].
Deist, Timo M. ;
Dankers, Frank J. W. M. ;
Valdes, Gilmer ;
Wijsman, Robin ;
Hsu, I-Chow ;
Oberije, Cary ;
Lustberg, Tim ;
van Soest, Johan ;
Hoebers, Frank ;
Jochems, Arthur ;
El Naqa, Issam ;
Wee, Leonard ;
Morin, Olivier ;
Raleigh, David R. ;
Bots, Wouter ;
Kaanders, Johannes H. ;
Belderbos, Jose ;
Kwint, Margriet ;
Solberg, Timothy ;
Monshouwer, Rene ;
Bussink, Johan ;
Dekker, Andre ;
Lambin, Philippe .
MEDICAL PHYSICS, 2018, 45 (07) :3449-3459
[24]   Coastal zone significant wave height prediction by supervised machine learning classification algorithms [J].
Demetriou, Demetris ;
Michailides, Constantine ;
Papanastasiou, George ;
Onoufriou, Toula .
OCEAN ENGINEERING, 2021, 221
[25]   Prediction of Glass Chemical Composition and Type Identification Based on Machine Learning Algorithms [J].
Chen, Ziwei ;
Xu, Yang ;
Zhang, Chao ;
Tang, Min .
APPLIED SCIENCES-BASEL, 2024, 14 (10)
[26]   Machine learning regression and classification algorithms utilised for strength prediction of OPC/by-product materials improved soils [J].
Eyo, E. U. ;
Abbey, S. J. .
CONSTRUCTION AND BUILDING MATERIALS, 2021, 284
[27]   Application of Machine Learning Algorithms for Visibility Classification [J].
Ortega, Luz ;
Otero, Luis Daniel ;
Otero, Carlos .
2019 13TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2019,
[28]   Hybrid Machine Learning Algorithms to Evaluate Prostate Cancer [J].
Morakis, Dimitrios ;
Adamopoulos, Adam .
ALGORITHMS, 2024, 17 (06)
[29]   Improving and Assessing the Prediction Capability of Machine Learning Algorithms for Breast Cancer Diagnosis [J].
Tasdemir, Funda Ahmetoglu .
INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 2, 2022, 505 :182-189
[30]   Machine Learning Algorithms for Analysis and Prediction of Depression [J].
Kilaskar M. ;
Saindane N. ;
Ansari N. ;
Doshi D. ;
Kulkarni M. .
SN Computer Science, 2022, 3 (2)