Ellipsoidal and Gaussian Kalman Filter Model for Discrete-Time Nonlinear Systems

被引:8
作者
Sun, Ligang [1 ]
Alkhatib, Hamza [1 ]
Kargoll, Boris [2 ]
Kreinovich, Vladik [3 ]
Neumann, Ingo [1 ]
机构
[1] Leibniz Univ Hannover, Geodat Inst Hannover, D-30167 Hannover, Germany
[2] Hsch Anhalt, Inst Geoinformat & Vermessung Dessau, D-06846 Dessau, Germany
[3] Univ Texas El Paso, Dept Comp Sci, El Paso, TX 79968 USA
关键词
Ellipsoidal and Gaussian Kalman filter; state estimation; unknown but bounded uncertainty; nonlinear programming; convex optimization; GUARANTEED STATE ESTIMATION; PARAMETER; SETS;
D O I
10.3390/math7121168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a new technique-called Ellipsoidal and Gaussian Kalman filter-for state estimation of discrete-time nonlinear systems in situations when for some parts of uncertainty, we know the probability distributions, while for other parts of uncertainty, we only know the bounds (but we do not know the corresponding probabilities). Similarly to the usual Kalman filter, our algorithm is iterative: on each iteration, we first predict the state at the next moment of time, and then we use measurement results to correct the corresponding estimates. On each correction step, we solve a convex optimization problem to find the optimal estimate for the system's state (and the optimal ellipsoid for describing the systems's uncertainty). Testing our algorithm on several highly nonlinear problems has shown that the new algorithm performs the extended Kalman filter technique better-the state estimation technique usually applied to such nonlinear problems.
引用
收藏
页数:22
相关论文
共 31 条
[1]   Guaranteed state estimation by zonotopes [J].
Alamo, T ;
Bravo, JM ;
Camacho, EF .
AUTOMATICA, 2005, 41 (06) :1035-1043
[2]   Sequential Monte Carlo Filtering for Nonlinear GNSS Trajectories [J].
Alkhatib, H. ;
Paffenholz, J. -A. ;
Kutterer, H. .
VII HOTINE-MARUSSI SYMPOSIUM ON MATHEMATICAL GEODESY, 2012, 137 :81-86
[3]  
Alkhatib H., 2015, 1 INT WORKSH QUAL GE, V140
[4]  
Althoff Matthias, 2009, 2009 European Control Conference (ECC), P625
[5]  
[Anonymous], 1999, Developments in Reliable Computing, DOI DOI 10.1007/978-94-017-1247-7
[6]   MINIMAX REACHABILITY OF TARGET SETS AND TARGET TUBES [J].
BERTSEKAS, DP ;
RHODES, IB .
AUTOMATICA, 1971, 7 (02) :233-+
[7]  
Blank L, 2007, LECT NOTES CONTR INF, V358, P335
[8]  
Combastel C, 2005, IEEE DECIS CONTR P, P7228
[9]   Multi-input multi-output ellipsoidal state bounding [J].
Durieu, C ;
Walter, É ;
Polyak, B .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 111 (02) :273-303
[10]  
Ferson S., 2007, SAND20070939162 SAND