Associated primes and cofiniteness of local cohomology modules

被引:57
作者
Dibaei, MT [1 ]
Yassemi, S
机构
[1] Inst Studies Theoret Phys & Math, Tehran, Iran
[2] Teacher Training Univ, Dept Math, Tehran, Iran
[3] Univ Tehran, Dept Math, Tehran, Iran
关键词
associated primes; cofinite modules; local cohomology modules;
D O I
10.1007/s00229-005-0538-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a be an ideal of Noetherian ring R and let s be a non-negative integer. Let M be an R-module such that Ext(R)(s) (R/a, M) is finite R-module. If s is the first integer such that the local cohomology module H(a)(s) (M) is non a-cofinite, then we show that HOM(R) (R/a, H(a)(s) (M)) is finite. In particular, the set of associated primes of H(a)(s) (M) is finite. Let (R, m) be a local Noetherian ring and let M be a finite R-module. We study the last integer n such that the local cohomology module H(a)(n) (M) is not m-cofinite and show that n just depends on the support of M.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 20 条
[1]   A generalization of the cofiniteness problem in local cohomology modules [J].
Asadollahi, J ;
Khashyarmanesh, K ;
Salarian, S .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 75 :313-324
[2]   On annihilators and associated primes of local cohomology modules [J].
Brodmann, M ;
Rotthaus, C ;
Sharp, RY .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (03) :197-227
[3]   A finiteness result for associated primes of local cohomology modules [J].
Brodmann, MP ;
Faghani, AL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) :2851-2853
[4]  
Bruns W., 1993, CAMBRIDGE STUDIES AD, V39
[5]   Cofinite modules and local cohomology [J].
Delfino, D ;
Marley, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (01) :45-52
[6]  
DIVAANIAAZAR K, IN PRESS P AM MATH S
[7]  
Grothendieck A., 1968, SGA, V2
[8]   AFFINE DUALITY AND COFINITENESS [J].
HARTSHORNE, R .
INVENTIONES MATHEMATICAE, 1970, 9 (02) :145-+
[9]   COHOMOLOGICAL DIMENSION OF ALGEBRAIC VARIETIES [J].
HARTSHORNE, R .
ANNALS OF MATHEMATICS, 1968, 88 (03) :403-+
[10]  
HUNEKE C, 1992, RES NOT MAT, V2, P93