Evaluation of Split-Brain Autoencoders for High-Resolution Remote Sensing Scene Classification

被引:0
|
作者
Stojnic, Vladan [1 ]
Risojevic, Vladimir [1 ]
机构
[1] Univ Banja Luka, Fac Elect Engn, Patre 5, Banja Luka 78000, Bosnia & Herceg
来源
PROCEEDINGS OF ELMAR-2018: 60TH INTERNATIONAL SYMPOSIUM ELMAR-2018 | 2018年
关键词
Self-supervised learning; Aerial image classification; Remote sensing; Colorization;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Self-supervised methods are interesting for remote sensing because there are not many human labeled datasets available, but there is practically unlimited amount of data that can be used for self-supervised learning. In this paper we analyze the use of split-brain autoencoders in the context of remote sensing image classification. We investigate the importance of training set size, choice of color space and size of the model to the classification accuracy. We show that even with small amount of unlabeled training images, if we finetune the weights learned by the autoencoder, we can achieve almost state of the art results of 89.27% on AID dataset.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条
  • [1] Analysis of Color Space Quantization in Split-Brain Autoencoder for Remote Sensing Image Classification
    Stojnic, Vladan
    Risojevic, Vladimir
    2018 14TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2018,
  • [2] Deep Differential Coding for High-Resolution Remote Sensing Scene Classification
    Shi, Qiuping
    Li, Jie
    Jiao, Zhicheng
    Wang, Ying
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS PROCESSING (ICIGP 2018), 2018, : 71 - 77
  • [3] Scene classification of high-resolution remote sensing images based on IMFNet
    Zhang, Xin
    Wang, Yongcheng
    Zhang, Ning
    Xu, Dongdong
    Chen, Bo
    Ben, Guangli
    Wang, Xue
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [4] High-Resolution Remote Sensing Scene Classification Using Improved LBP and SDSAE
    Zhao, Feng'an
    Mu, Xiaodong
    Yi, Zhaoxiang
    Yang, Zhou
    PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND SYSTEMS (ICACS 2018), 2018, : 155 - 159
  • [5] Object-based deep convolutional autoencoders for high-resolution remote sensing image classification
    Jiang, Weiwei
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (03)
  • [6] Semantic Multigranularity Feature Learning for High-Resolution Remote Sensing Image Scene Classification
    Ma, Xinyi
    Xiao, Zhifeng
    Yun, Hong-sik
    Lee, Seung-Jun
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [7] Attention based Residual Network for High-Resolution Remote Sensing Imagery Scene Classification
    Fan, Runyu
    Wang, Lizhe
    Feng, Ruyi
    Zhu, Yingqian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1346 - 1349
  • [8] Transfer Learning Based Mixture of Experts Classification Model for High-Resolution Remote Sensing Scene Classification
    Gong Xi
    Chen Zhanlong
    Wu Liang
    Xie Zhong
    Xu Yongyang
    ACTA OPTICA SINICA, 2021, 41 (23)
  • [9] Contrastive Scene Change Representation Learning for High-Resolution Remote Sensing Scene Change Detection
    Wang, Jue
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18
  • [10] HIGH-RESOLUTION REMOTE SENSING IMAGE SCENE UNDERSTANDING: A REVIEW
    Zhu, Qiqi
    Sun, Xiongli
    Zhong, Yanfei
    Zhang, Liangpei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3061 - 3064