Synchrony and pattern formation of coupled genetic oscillators on a chip of artificial cells

被引:78
作者
Tayar, Alexandra M. [1 ]
Karzbrun, Eyal [2 ]
Noireaux, Vincent [3 ]
Bar-Ziv, Roy H. [1 ]
机构
[1] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel
[3] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
关键词
genetic oscillators; DNA compartment; cell-free protein synthesis; synchrony; pattern formation; CIRCADIAN OSCILLATORS; NETWORKS; DYNAMICS; BEHAVIOR; DESIGN; SYSTEM; ROBUST; MODEL;
D O I
10.1073/pnas.1710620114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding how biochemical networks lead to large-scale non equilibrium self-organization and pattern formation in life is a major challenge, with important implications for the design of programmable synthetic systems. Here, we assembled cell-free genetic oscillators in a spatially distributed system of on-chip DNA compartments as artificial cells, and measured reaction-diffusion dynamics at the single cell level up to the multicell scale. Using a cell-free gene network we programmed molecular interactions that control the frequency of oscillations, population variability, and dynamical stability. We observed frequency entrainment, synchronized oscillatory reactions and pattern formation in space, as manifestation of collective behavior. The transition to synchrony occurs as the local coupling between compartments strengthens. Spatiotemporal oscillations are induced either by a concentration gradient of a diffusible signal, or by spontaneous symmetry breaking close to a transition from oscillatory to nonoscillatory dynamics. This work offers design principles for programmable biochemical reactions with potential applications to autonomous sensing, distributed computing, and biomedical diagnostics.
引用
收藏
页码:11609 / 11614
页数:6
相关论文
共 38 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[3]   A synthetic multicellular system for programmed pattern formation [J].
Basu, S ;
Gerchman, Y ;
Collins, CH ;
Arnold, FH ;
Weiss, R .
NATURE, 2005, 434 (7037) :1130-1134
[4]   Engineering stability in gene networks by autoregulation [J].
Becskei, A ;
Serrano, L .
NATURE, 2000, 405 (6786) :590-593
[5]   Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus [J].
Bernard, Samuel ;
Gonze, Didier ;
Cajavec, Branka ;
Herzel, Hanspeter ;
Kramer, Achim .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (04) :667-679
[6]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[7]   A synchronized quorum of genetic clocks [J].
Danino, Tal ;
Mondragon-Palomino, Octavio ;
Tsimring, Lev ;
Hasty, Jeff .
NATURE, 2010, 463 (7279) :326-330
[8]   On the Critical Coupling for Kuramoto Oscillators [J].
Doerfler, Florian ;
Bullo, Francesco .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (03) :1070-1099
[9]   A synthetic oscillatory network of transcriptional regulators [J].
Elowitz, MB ;
Leibler, S .
NATURE, 2000, 403 (6767) :335-338
[10]   The All E-coli TX-TL Toolbox 2.0: A Platform for Cell-Free Synthetic Biology [J].
Garamella, Jonathan ;
Marshall, Ryan ;
Rustad, Mark ;
Noireaux, Vincent .
ACS SYNTHETIC BIOLOGY, 2016, 5 (04) :344-355