INDEPENDENCE NUMBER, CONNECTIVITY AND ALL FRACTIONAL (a, b, k)-CRITICAL GRAPHS

被引:20
|
作者
Yuan, Yuan [1 ]
Hao, Rong-Xia [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
independence number; connectivity; fractional; a; b]-factor; (a; b; k)-critical graph; all fractional (a; SIMPLIFIED EXISTENCE THEOREMS; F)-FACTORS; (G;
D O I
10.7151/dmgt.2075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and a, b and k be nonnegative integers with 1 <= a <= b. A graph G is defined as all fractional (a, b, k)-critical if after deleting any k vertices of G, the remaining graph has all fractional [a, b]-factors. In this paper, we prove that if kappa(G) >= max {(b+1)(2)+2k/2, (b+1)(2)alpha(G)+4ak/4a}, then G is all fractional (a, b, k)-critical. If k = 0, we improve the result given in [Filomat 29 (2015) 757-761]. Moreover, we show that this result is best possible in some sense.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 50 条
  • [1] Independence number, connectivity and (a, b, k)-critical graphs
    Zhou, Sizhong
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4144 - 4148
  • [2] INDEPENDENCE NUMBER AND CONNECTIVITY FOR FRACTIONAL (a, b, k)-CRITICAL COVERED GRAPHS
    Zhou, Sizhong
    Wu, Jiancheng
    Liu, Hongxia
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) : 2535 - 2542
  • [3] Minimum Degree, Independence Number and (a, b, k)-Critical Graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2013, 108 : 425 - 430
  • [4] Toughness condition for the existence of all fractional (a, b, k)-critical graphs
    Yuan, Yuan
    Hao, Rong-Xia
    DISCRETE MATHEMATICS, 2019, 342 (08) : 2308 - 2314
  • [5] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Wang, Su-Fang
    Zhang, Wei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (01) : 197 - 205
  • [6] Notes on fractional (a, b, k)-critical covered graphs
    Sun, Zhiren
    Zhou, Sizhong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (01): : 105 - 115
  • [7] Independence Number, Connectivity and Fractional (g, f)-Factors in Graphs
    Bian, Qiuju
    Zhou, Sizhong
    FILOMAT, 2015, 29 (04) : 757 - 761
  • [8] Binding Numbers for all Fractional (a, b, k)-Critical Graphs
    Zhou, Sizhong
    Bian, Qiuxiang
    Sun, Zhiren
    FILOMAT, 2014, 28 (04) : 709 - 713
  • [9] Binding number and minimum degree for (a, b, k)-critical graphs
    Zhou, Sizhong
    Duan, Ziming
    UTILITAS MATHEMATICA, 2012, 88 : 309 - 315
  • [10] A Result on Fractional (a, b, k)-critical Covered Graphs
    Zhou, Si-zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (04): : 657 - 664