Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau

被引:65
作者
Chen, Xiaolei [1 ,2 ]
Liu, Yimin [1 ,2 ]
Wu, Guoxiong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
surface temperature; cold bias; CMIP5; AMIP; Tibetan Plateau; surface energy budget; GENERAL-CIRCULATION MODELS; GLOBAL CLIMATE MODELS; SNOW-ALBEDO FEEDBACK; PART I; CHINA; VARIABILITY; ENSEMBLE; ASIA; SEA;
D O I
10.1007/s00376-017-6326-9
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau (TP) for the period 1979-2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures (T-as) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures (T-s) over the TP. The cold biases are larger in T-as than in T-s, and are larger over the western TP. By decomposing the T-s bias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux, and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias. Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models.
引用
收藏
页码:1447 / 1460
页数:14
相关论文
共 45 条
[1]   Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter [J].
Annan, JD ;
Lunt, DJ ;
Hargreaves, JC ;
Valdes, PJ .
NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (03) :363-371
[2]  
[Anonymous], 1991, A User's Guide to Principal Components
[3]   A METHODOLOGY FOR UNDERSTANDING AND INTERCOMPARING ATMOSPHERIC CLIMATE FEEDBACK PROCESSES IN GENERAL-CIRCULATION MODELS [J].
CESS, RD ;
POTTER, GL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1988, 93 (D7) :8305-8314
[4]   Surface Air Temperature Changes over the Twentieth and Twenty-First Centuries in China Simulated by 20 CMIP5 Models [J].
Chen, Liang ;
Frauenfeld, Oliver W. .
JOURNAL OF CLIMATE, 2014, 27 (11) :3920-3937
[5]  
[闻新宇 WEN XinYu], 2006, [大气科学, Chinese Journal of Atmospheric Sciences], V30, P894
[6]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[7]   Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia [J].
Duan, AM ;
Wu, GX .
CLIMATE DYNAMICS, 2005, 24 (7-8) :793-807
[8]   Can Current AGCMs Reproduce Historical Changes in the Atmospheric Diabatic Heating over the Tibetan Plateau? [J].
Duan An-Min ;
Xiao Zhi-Xiang ;
Hu Jun .
ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2014, 7 (02) :143-148
[9]  
Flohn H., 1957, J METEOROL SOC JPN, V35, P180, DOI [10.2151/jmsj1923.35A.0180, DOI 10.2151/JMSJ1923.35A.0180, DOI 10.2151/JMSJ1923.35A.0_180]
[10]   Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau [J].
Frauenfeld, OW ;
Zhang, TJ ;
Serreze, MC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D2) :1-9