Enhancement and cleaning of handwritten data by using neural networks

被引:0
|
作者
Hidalgo, JL [1 ]
España, S
Castro, MJ
Pérez, JA
机构
[1] Univ Politecn Valencia, Dept Sistemas Informat & Computac, E-46071 Valencia, Spain
[2] Univ Politecn Valencia, Dept Informat Sistemas & Computadores, E-46071 Valencia, Spain
来源
PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS | 2005年 / 3522卷
关键词
handwritten recognition; form processing; image enhancement; image denoising; artificial neural networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, artificial neural networks are used to clean and enhance scanned images for a handwritten recognition task. Multilayer perceptrons are trained in a supervised way using a set of simulated noisy images together with the corresponding clean images for the desired output. The neural network acquires the function of a desired enhancing method. The performance of this method has been evaluated for both noisy artificial and natural images. Objective and subjective methods of evaluation have shown a superior performance of the proposed method over other conventional enhancing and cleaning filters.
引用
收藏
页码:376 / 383
页数:8
相关论文
共 50 条
  • [31] Function Approximation and Documentation of Sampling Data Using Artificial Neural Networks
    Wenjun Zhang
    Albert Barrion
    Environmental Monitoring and Assessment, 2006, 122 : 185 - 201
  • [32] Training of Artificial Neural Networks Using Information-Rich Data
    Singh, Shailesh Kumar
    Jain, Sharad K.
    Bardossy, Andras
    HYDROLOGY, 2014, 1 (01): : 40 - 62
  • [33] Cooperative Feature Level Data Fusion for Authentication Using Neural Networks
    Abernethy, Mark
    Rai, Shri M.
    NEURAL INFORMATION PROCESSING (ICONIP 2014), PT I, 2014, 8834 : 578 - 585
  • [34] Analysis of monitoring data for the safety control of dams using neural networks
    Panizzo, A.
    Petaccia, A.
    NEW TRENDS IN FLUID MECHANICS RESEARCH: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON FLUID MECHANICS, 2007, : 344 - +
  • [35] Data Quality Improvements for Internet of Things Using Artificial Neural Networks
    Nait-Abdesselam, Farid
    Titouna, Chafiq
    2020 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (IEEE ANTS), 2020,
  • [36] Integrating scattering feature maps with convolutional neural networks for Malayalam handwritten character recognition
    K. Manjusha
    M. Anand Kumar
    K. P. Soman
    International Journal on Document Analysis and Recognition (IJDAR), 2018, 21 : 187 - 198
  • [37] BomoNet: Bangla Handwritten Characters Recognition Using Convolutional Neural Network
    Rabby, A. K. M. Shahariar Azad
    Haque, Sadeka
    Islam, Md. Sanzidul
    Abujar, Sheikh
    Hossain, Syed Akhter
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 528 - 535
  • [38] Integrating scattering feature maps with convolutional neural networks for Malayalam handwritten character recognition
    Manjusha, K.
    Kumar, M. Anand
    Soman, K. P.
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2018, 21 (03) : 187 - 198
  • [39] Evaluating Deep Neural Networks for Image Document Enhancement
    Kirsten, Lucas N.
    Piccoli, Ricardo
    Ribani, Ricardo
    PROCEEDINGS OF THE 21ST ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG '21), 2021,
  • [40] Adaptive Image Enhancement Method Based on Neural Networks
    Zhou Fuqiang
    Xiong Ying
    SEVENTH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND CONTROL TECHNOLOGY: OPTOELECTRONIC TECHNOLOGY AND INSTUMENTS, CONTROL THEORY AND AUTOMATION, AND SPACE EXPLORATION, 2008, 7129