Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae

被引:13
作者
Chomvong, Kulika [1 ]
Benjamin, Daniel I. [2 ]
Nomura, Daniel K. [2 ]
Cate, Jamie H. D. [3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Nutr Sci & Toxicol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
PMA1; cellobiose; glucose sensors; metabolomics; MEMBRANE H+-ATPASE; PLASMA-MEMBRANE; YEAST PHOSPHOFRUCTOKINASE; NEUROSPORA-CRASSA; ACTIVATION; TRANSPORTERS; PHOSPHATE; RGT1; FERMENTATION; GLYCOLYSIS;
D O I
10.1128/mBio.00855-17
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 (PFK2), H+-plasma membrane ATPase (PMA1), and glucose sensors (SNF3 and RGT2) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions. IMPORTANCE Living cells are fine-tuned through evolution to thrive in their native environments. Genome alterations to create organisms for specific biotechnological applications may result in unexpected and undesired phenotypes. We used a minimal synthetic biological system in the yeast Saccharomyces cerevisiae as a platform to reveal novel connections between carbon sensing, starvation conditions, and energy homeostasis.
引用
收藏
页数:12
相关论文
共 43 条
[2]  
BANUELOS M, 1977, J BIOL CHEM, V252, P6394
[3]   Inositol Phosphate Recycling Regulates Glycolytic and Lipid Metabolism That Drives Cancer Aggressiveness [J].
Benjamin, Daniel I. ;
Louie, Sharon M. ;
Mulvihill, Melinda M. ;
Kohnz, Rebecca A. ;
Li, Daniel S. ;
Chan, Lauryn G. ;
Sorrentino, Antonio ;
Bandyopadhyay, Sourav ;
Cozzo, Alyssa ;
Ohiri, Anayo ;
Goga, Andrei ;
Ng, Shu-Wing ;
Nomura, Daniel K. .
ACS CHEMICAL BIOLOGY, 2014, 9 (06) :1340-1350
[4]   When too much ATP is a bad thing: a pivotal role for P2X7 receptors in motor neuron degeneration [J].
Browne, Susan E. .
JOURNAL OF NEUROCHEMISTRY, 2013, 126 (03) :301-304
[5]   Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast [J].
Choi, Kyung-Mi ;
Kwon, Young-Yon ;
Lee, Cheol-Koo .
FEBS LETTERS, 2015, 589 (03) :349-357
[6]   The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels [J].
Daran-Lapujade, Pascale ;
Rossell, Sergio ;
van Gulik, Walter M. ;
Luttik, Marijke A. H. ;
de Groot, Marco J. L. ;
Slijper, Monique ;
Heck, Albert J. R. ;
Daran, Jean-Marc ;
de Winde, Johannes H. ;
Westerhoff, Hans V. ;
Pronk, Jack T. ;
Bakker, Barbara M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (40) :15753-15758
[7]   Cytosolic pH: A conserved regulator of cell growth? [J].
Dechant, Reinhard ;
Peter, Matthias .
MOLECULAR & CELLULAR ONCOLOGY, 2014, 1 (04)
[8]  
ERASO P, 1994, J BIOL CHEM, V269, P10393
[9]   Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase [J].
Eraso, Pilar ;
Mazon, Maria J. ;
Portillo, Francisco .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (02) :164-170
[10]   Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters [J].
Flick, KM ;
Spielewoy, N ;
Kalashnikova, TI ;
Guaderrama, M ;
Zhu, QZ ;
Chang, HC ;
Wittenberg, C .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (08) :3230-3241