The essential spectrum of the nonself-adjoint Maxwell operator in a bounded domain

被引:11
作者
Lassas, M [1 ]
机构
[1] Univ Helsinki, Rolf Nevanlinna Inst, FIN-00014 Helsinki, Finland
关键词
D O I
10.1006/jmaa.1998.5998
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:201 / 217
页数:17
相关论文
共 10 条
[1]   A COERCIVE BILINEAR FORM FOR MAXWELL EQUATIONS [J].
COSTABEL, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 157 (02) :527-541
[2]  
Dautray R., 1990, Mathematical Analysis and Numerical Methods for Science and technology
[3]  
Gohberg I.C., 1969, Introduction to the theory of linear nonselfadjoint operators, V18, pxv+378
[4]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
[5]  
LASSAS M, 1995, ANN ACAD SCI FENN MA, V103
[6]  
Leis R., 1986, INITIAL BOUNDARY VAL
[7]  
PICARD R, 1984, J REINE ANGEW MATH, V354, P50
[9]  
Reed M., 1972, Methods of modern mathematical physics, V1
[10]   A LINEARIZED INVERSE BOUNDARY-VALUE PROBLEM FOR MAXWELL EQUATIONS [J].
SOMERSALO, E ;
ISAACSON, D ;
CHENEY, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 42 (01) :123-136