POWER-TYPE QUASIMINIMIZERS

被引:9
作者
Bjorn, Anders [1 ]
Bjorn, Jana [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
Doubling measure; nonlinear; p-harmonic; Poincare inequality; potential theory; quasiminimizer; quasisubharmonic; quasisubininimizer; quasisuperharmonic; quasisuperminimizer; METRIC-SPACES; BOUNDARY-REGULARITY; VARIATIONAL INTEGRALS; ELLIPTIC-EQUATIONS; QUASI-MINIMA; INEQUALITIES; HARNACK; INTEGRABILITY;
D O I
10.5186/aasfm.2011.3619
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we examine the quasiminimizing properties of radial power-type functions u(x) = vertical bar x vertical bar(alpha) in R-n. We find the optimal quasiminimizing constant whenever u is a quasiminfinizer of the p-Dirichlet integral, p not equal n, and similar results when u is a quasisub- and quasisuperminimizer. We also obtain similar results for log-powers when p = n.
引用
收藏
页码:301 / 319
页数:19
相关论文
共 25 条