An efficient algebraic multigrid method for second-order elliptic equation on polygonal domains

被引:0
作者
Li, Ming [1 ]
机构
[1] Honghe Univ, Dept Math & Stat, Mengzi 661100, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
algebraic multigrid method; finite element method; polygonal domain; prolongation operator; 4TH-ORDER COMPACT SCHEME; POISSON;
D O I
10.1002/mma.7758
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on a coarsening strategy of adjacency matrix, a new algebraic prolongation operator is developed for standard V-cycle multigrid method to accelerate the whole process. An efficient algebraic multigrid (EAMG) method is proposed for solving large-scale linear system, which arise from finite element (FE) discretization of second-order elliptic boundary value problem. Numerical experiments on polygonal domains are conducted to demonstrate that the EAMG computation is more efficient than standard method.
引用
收藏
页数:11
相关论文
共 23 条
  • [1] BRANDT A, 1986, APPL MATH COMPUT, V19, P23, DOI 10.1016/0096-3003(86)90095-0
  • [2] Briggs WL., 2000, MULTIGRID TUTORIAL
  • [3] On the algebraic multigrid method
    Chang, QS
    Wong, YS
    Fu, HQ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (02) : 279 - 292
  • [4] An EXCMG accelerated multiscale multigrid computation for 3D Poisson equation
    Dai, Ruxin
    Lin, Pengpeng
    Zhang, Jun
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (08) : 2051 - 2060
  • [5] Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems
    Ge, Yongbin
    Cao, Fujun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 4051 - 4070
  • [6] High accuracy multigrid solution of the 3D convection-diffusion equation
    Gupta, MM
    Zhang, J
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2000, 113 (2-3) : 249 - 274
  • [7] On the convergence of an extrapolation cascadic multigrid method for elliptic problems
    Hu, Hongling
    Ren, Zhengyong
    He, Dongdong
    Pan, Kejia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) : 759 - 771
  • [8] TIME-EXTRAPOLATION ALGORITHM (TEA) FOR LINEAR PARABOLIC PROBLEMS
    Hu, Hongling
    Chen, Chuanmiao
    Pan, Kejia
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (02) : 183 - 194
  • [9] Kickinger F., 1998, SPRINGER LECT NOTES, V3, P157
  • [10] Li M., 2020, MATH METHOD APPL SCI, V44, P1