2D measurements of plasma electron density using coherence imaging with a pixelated phase mask

被引:7
作者
Allcock, J. S. [1 ,2 ]
Silburn, S. A. [2 ]
Sharples, R. M. [1 ]
Harrison, J. R. [2 ]
Conway, N. J. [2 ]
Vernimmen, J. W. M. [3 ]
机构
[1] Univ Durham, Ctr Adv Instrumentat, Dept Phys, Durham DH1 3LE, England
[2] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England
[3] DIFFER Dutch Inst Fundamental Energy Res, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
POLARIZATION; DETACHMENT;
D O I
10.1063/5.0050704
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, the pixelated phase mask (PPM) method of interferometry is applied to coherence imaging (CI)-a passive, narrowband spectral imaging technique for diagnosing the edge and divertor regions of fusion plasma experiments. Compared to previous CI designs that use a linear phase mask, the PPM method allows for a higher possible spatial resolution. The PPM method is also observed to give a higher instrument contrast (analogous to a more narrow spectrometer instrument function). A single-delay PPM instrument is introduced as well as a multi-delay system that uses a combination of both pixelated and linear phase masks to encode the coherence of the observed radiation at four different interferometer delays simultaneously. The new methods are demonstrated with measurements of electron density n(e), via Stark broadening of the H-gamma emission line at 434.0 nm, made on the Magnum-PSI linear plasma experiment. A comparison of the Abel-inverted multi-delay CI measurements with Thomson scattering shows agreement across the 3 x 10(19) < n(e) < 1 x 10(21) m(-3) range. For the single-delay CI results, agreement is found for n(e) > 1 x 10(20) m(-3) only. Accurate and independent interpretation of single-delay CI data at lower n(e) was not possible due to Doppler broadening and continuum emission. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 46 条
  • [1] The role of hydrogen molecular effects on detachment in Magnum-PSI
    Akkermans, G. R. A.
    Classen, I. G. J.
    Perillo, R.
    van der Meiden, H. J.
    Federici, F.
    Brezinsek, S.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (10)
  • [2] SIMULTANEOUS ALGEBRAIC RECONSTRUCTION TECHNIQUE (SART) - A SUPERIOR IMPLEMENTATION OF THE ART ALGORITHM
    ANDERSEN, AH
    KAK, AC
    [J]. ULTRASONIC IMAGING, 1984, 6 (01) : 81 - 94
  • [3] [Anonymous], 2006, Data_analysis:_a_Bayesian_tutorial
  • [4] FRINGE-PATTERN ANALYSIS USING A 2-D FOURIER-TRANSFORM
    BONE, DJ
    BACHOR, HA
    SANDEMAN, RJ
    [J]. APPLIED OPTICS, 1986, 25 (10): : 1653 - 1660
  • [5] Development and simulation of multi-diagnostic Bayesian analysis for 2D inference of divertor plasma characteristics
    Bowman, C.
    Harrison, J. R.
    Lipschultz, B.
    Orchard, S.
    Gibson, K. J.
    Carr, M.
    Verhaegh, K.
    Myatra, O.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (04)
  • [6] Chipman R. A., 2018, POLARIZED LIGHT OPTI
  • [7] Cross-section analysis of the Magnum-PSI plasma beam using a 2D multi-probe system
    Costin, C.
    Anita, V.
    Ghiorghiu, F.
    Popa, G.
    De Temmerman, G.
    van den Berg, M. A.
    Scholten, J.
    Brons, S.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (01)
  • [8] Dynamic quantitative phase imaging for biological objects using a pixelated phase mask
    Creath, Katherine
    Goldstein, Goldie
    [J]. BIOMEDICAL OPTICS EXPRESS, 2012, 3 (11): : 2866 - 2880
  • [9] Davis S. P., 2001, Fourier Transform Spectrometry
  • [10] High heat flux capabilities of the Magnum-PSI linear plasma device
    De Temmerman, G.
    van den Berg, M. A.
    Scholten, J.
    Lof, A.
    van der Meiden, H. J.
    van Eck, H. J. N.
    Morgan, T. W.
    de Kruijf, T. M.
    van Emmichoven, P. A. Zeijlmans
    Zielinski, J. J.
    [J]. FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) : 483 - 487