Online Algorithms for 3-Space Bounded 2-Dimensional Bin Packing and Square Packing

被引:0
|
作者
Grzegorek, Paulina [1 ]
Januszewski, Janusz [1 ]
机构
[1] Univ Technol & Life Sci, Inst Math & Phys, PL-85789 Bydgoszcz, Poland
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In 2-dimensional bin packing problem each item is a rectangle of side lengths not greater than 1. The items are packed online into square bins of size 1 x 1 and 90 degrees-rotations are allowed. In t-space bounded model of online bin packing each item can be packed only into one of t active bins. If it is impossible to pack an item into any active bin, we close one of the current active bins and open a new active bin to pack that item. In this paper a 3.577-competitive 3-space bounded online packing algorithm is presented. Furthermore, an online algorithm for packing squares with the competitive ratio 2.8 is described.
引用
收藏
页码:190 / 203
页数:14
相关论文
共 50 条
  • [21] Parallel Online Algorithms for the Bin Packing Problem
    Fekete, Sandor P.
    Grosse-Holz, Jonas
    Keldenich, Phillip
    Schmidt, Arne
    ALGORITHMICA, 2023, 85 (01) : 296 - 323
  • [22] Parallel Online Algorithms for the Bin Packing Problem
    Fekete, Sandor P.
    Grosse-Holz, Jonas
    Keldenich, Phillip
    Schmidt, Arne
    APPROXIMATION AND ONLINE ALGORITHMS (WAOA 2019), 2020, 11926 : 106 - 119
  • [23] ONLINE ALGORITHMS FOR A DUAL VERSION OF BIN PACKING
    CSIRIK, J
    TOTIK, V
    DISCRETE APPLIED MATHEMATICS, 1988, 21 (02) : 163 - 167
  • [24] Comparing online algorithms for bin packing problems
    Leah Epstein
    Lene M. Favrholdt
    Jens S. Kohrt
    Journal of Scheduling, 2012, 15 : 13 - 21
  • [25] Parallel Online Algorithms for the Bin Packing Problem
    Sándor P. Fekete
    Jonas Grosse-Holz
    Phillip Keldenich
    Arne Schmidt
    Algorithmica, 2023, 85 : 296 - 323
  • [26] Comparing online algorithms for bin packing problems
    Epstein, Leah
    Favrholdt, Lene M.
    Kohrt, Jens S.
    JOURNAL OF SCHEDULING, 2012, 15 (01) : 13 - 21
  • [27] An optimal online algorithm for bounded space variable-sized bin packing
    Seiden, SS
    AUTOMATA LANGUAGES AND PROGRAMMING, 2000, 1853 : 283 - 295
  • [28] A tight lower bound for the online bounded space hypercube bin packing problem
    Kohayakawa, Yoshiharu
    Miyazawa, Flavio Keidi
    Wakabayashi, Yoshiko
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (03):
  • [29] A 4-Space Bounded Approximation Algorithm for Online Bin Packing Problem
    Li, Sizhe
    Xue, Jinghui
    Jin, Mingming
    Wang, Kai
    He, Kun
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 394 - 405
  • [30] An optimal online algorithm or bounded space variable-sized bin packing
    Seiden, SS
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (04) : 458 - 470