Generic Properties of Koopman Eigenfunctions for Stable Fixed Points and Periodic Orbits

被引:1
作者
Kvalheim, Matthew D. [1 ]
Hong, David [2 ]
Revzen, Shai [3 ]
机构
[1] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
[3] Univ Michigan, Robot Inst, Dept Elect Engn & Comp Sci, Ecol & Evolutionary Biol Dept, Ann Arbor, MI 48109 USA
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 09期
关键词
Koopman operator; eigenfunctions; generic properties; isostables; periodic orbits; PHASE REDUCTION; SYSTEMS; LINEARIZATION;
D O I
10.1016/j.ifacol.2021.06.150
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Our recent work established existence and uniqueness results for Ck (actually Cikon linearizing semiconjugacies for C1 flows defined on the entire basin of an attracting hyperbolic fixed point or periodic orbit (Kvalheim and Revzen, 2019). Applications include (i) improvements, such as uniqueness statements, for the Sternberg linearization and Floquet normal form theorems, and (ii) results concerning the existence, uniqueness, classification, and convergence of various quantities appearing in the "applied Koopmanism" literature, such as principal eigenfunctions, isostables, and Laplace averages. In this work we consider the broadness of applicability of these results with an emphasis on the Koopmanism applications. In particular we show that, for the flows of "typical" C" vector fields having an attracting hyperbolic fixed point or periodic orbit with a fixed basin of attraction, the C" Koopman eigenfunctions can be completely classified, generalizing a result known for analytic eigenfunctions of analytic systems. Copyright (C) 2021 The Authors.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 30 条
  • [1] Blum-Smith B., 2017, Coll. Math. J, V48, P18, DOI DOI 10.4169/COLLEGE.MATH.J.48.1.18
  • [2] Applied Koopmanism
    Budisic, Marko
    Mohr, Ryan
    Mezic, Igor
    [J]. CHAOS, 2012, 22 (04)
  • [3] Global linearization and fiber bundle structure of invariant manifolds
    Eldering, Jaap
    Kvalheim, Matthew
    Revzen, Shai
    [J]. NONLINEARITY, 2018, 31 (09) : 4202 - 4245
  • [4] Hadamard J., 1902, PRINCETON U B, P49
  • [5] Hirsch M.W., 1994, Graduate Texts in Mathematics
  • [6] Khalil H.K., 2002, NONLINEAR SYSTEMS, V3
  • [7] Hamiltonian systems and transformations in Hilbert space
    Koopman, BO
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1931, 17 : 315 - 318
  • [8] Linearization in the large of nonlinear systems and Koopman operator spectrum
    Lan, Yueheng
    Mezic, Igor
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 242 (01) : 42 - 53
  • [9] Lee J., 2012, Introduction to Smooth Manifolds, V2nd, DOI 10.1007/978-1-4419-9982-5
  • [10] Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics
    Mauroy, A.
    Mezic, I.
    Moehlis, J.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 261 : 19 - 30