On the Performance of Reconfigurable Intelligent Surface-Aided Cell-Free Massive MIMO Uplink

被引:33
作者
Bashar, Manijeh [1 ]
Cumanan, Kanapathippillai [2 ]
Burr, Alister G. [2 ]
Xiao, Pei [1 ]
Di Renzo, Marco [3 ,4 ]
机构
[1] Univ Surrey, Guildford, Surrey, England
[2] Univ York, York, N Yorkshire, England
[3] CNRS, Paris, France
[4] Paris Saclay Univ, Paris, France
来源
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2020年
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
D O I
10.1109/GLOBECOM42002.2020.9322151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The uplink of a reconligurable intelligent surfaces (RIS)-aided cell-free massive multiple-input multiple-output (MIMO) system is analyzed, where the channel slate information (CSI) is estimated using uplink pilots. First, we derive analytical expressions for the achievable rate of the system with zero forcing (ZF) receiver, taking into account the effects of pilot contamination, channel estimation error and the distributed RISs. The max-min rale optimization problem is considered with per-user power constraints. To solve this non-convex problem, we propose to decouple the original optimization problem into two sub-problems, namely, phase shift design problem and power allocation problem. The power allocation problem is solved using a standard geometric programming (GP) whereas a semidefinite programming (SDP) is utilized to design the phase shifts. Moreover, the Taylor series approximation is used to convert the nonconvex constraints into a convex form. An iterative algorithm is proposed whereby at each iteration, one of the sub-problems is solved while the other design variable is fixed. The max-min user rate of the RIS-aided cell-free massive MIMO system is compared to that of conventional cell-free massive MIMO. Numerical results indicate the superiority of the proposed algorithm compared with a conventional cell-free massive MIMO system. Finally, the convergence of the proposed algorithm is investigated.
引用
收藏
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 2019, POSTGRAD MED, P1, DOI DOI 10.1080/00325481.2019.1559430
[2]  
Bashar M., IEEE T COMMUN
[3]  
Bashar M., 2018, P 2018 IEEE INT C CO, P1
[4]   Exploiting Deep Learning in Limited-Fronthaul Cell-Free Massive MIMO Uplink [J].
Bashar, Manijeh ;
Akbari, Ali ;
Cumanan, Kanapathippillai ;
Ngo, Hien Quoc ;
Burr, Alister G. ;
Xiao, Pei ;
Debbah, Merouane ;
Kittler, Josef .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (08) :1678-1697
[5]   Cell-Free Massive MIMO: User-Centric Approach [J].
Buzzi, Stefano ;
D'Andrea, Carmen .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2017, 6 (06) :706-709
[6]   Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come [J].
Di Renzo, Marco ;
Debbah, Merouane ;
Dinh-Thuy Phan-Huy ;
Zappone, Alessio ;
Alouini, Mohamed-Slim ;
Yuen, Chau ;
Sciancalepore, Vincenzo ;
Alexandropoulos, George C. ;
Hoydis, Jakob ;
Gacanin, Haris ;
de Rosny, Julien ;
Bounceur, Ahcene ;
Lerosey, Geoffroy ;
Fink, Mathias .
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2019, 2019 (1)
[7]  
Ngo HQ, 2018, CONF REC ASILOMAR C, P980, DOI 10.1109/ACSSC.2018.8645336
[8]   Cell-Free Massive MIMO Versus Small Cells [J].
Hien Quoc Ngo ;
Ashikhmin, Alexei ;
Yang, Hong ;
Larsson, Erik G. ;
Marzetta, Thomas L. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (03) :1834-1850
[9]  
Li S., 2020, IEEE WIREL COMMUN LE, V9, P716, DOI DOI 10.1109/LWC.2020.2966705
[10]  
Nadeem QUA, 2019, INTELLIGENT REFLECTI, P1