In the context of unfitted finite element discretizations, the realization of high-order methods is challenging due to the fact that the geometry approximation has to be sufficiently accurate. We consider a new unfitted finite element method that achieves a high-order approximation of the geometry for domains that are implicitly described by smooth-level set functions. The method is based on a parametric mapping, which transforms a piecewise planar interface reconstruction to a high-order approximation. Both components, the piecewise planar interface reconstruction and the parametric mapping, are easy to implement. In this article, we present an a priori error analysis of the method applied to an interface problem. The analysis reveals optimal order error bounds for the geometry approximation and for the finite element approximation, for arbitrary high-order discretization. The theoretical results are confirmed in numerical experiments.
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Shangqiu Normal Univ, Sch Math & Informat Sci, Shangqiu 476000, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Wang, Qiuliang
Chen, Jinru
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China