QUASIANALYTIC GELFAND-SHILOV SPACES WITH APPLICATION TO LOCALIZATION OPERATORS

被引:30
|
作者
Cordero, Elena [1 ]
Pilipovic, Steven [2 ]
Rodino, Luigi [1 ]
Teofanov, Nenad [2 ]
机构
[1] Univ Turin, Dept Math, I-10124 Turin, Italy
[2] Univ Novi Sad, Dept Math & Informat, Novi Sad, Serbia
关键词
Localization operator; ultra-distributions; Gelfand-Shilov spaces; modulation space; Wigner distribution; short-time Fourier transform; Schatten class; MODULATION SPACES; ULTRADISTRIBUTIONS; CALCULUS;
D O I
10.1216/RMJ-2010-40-4-1123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study localization operators with symbols in spaces of quasi-analytic distributions. More precisely, it is shown that certain quasianalytic distributions, considered as symbols, give rise to trace-class localization operators. We give a new structure theorem for quasianalytic distributions which combines its local and global properties. In the proof we use the heat kernel and parametrix techniques, while in the study of localization operators we use the techniques of time-frequency analysis.
引用
收藏
页码:1123 / 1147
页数:25
相关论文
共 50 条
  • [1] Modulation Spaces, Gelfand-Shilov Spaces and Pseudodifferential Operators
    Nenad Teofanov
    Sampling Theory in Signal and Image Processing, 2006, 5 (2): : 225 - 242
  • [2] On quasianalytic classes of Gelfand-Shilov type. Parametrix and convolution
    Pilipovic, Stevan
    Prangoski, Bojan
    Vindas, Jasson
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 174 - 210
  • [3] Classes of Degenerate Elliptic Operators in Gelfand-Shilov Spaces
    Gramchev, Todor
    Pilipovic, Stevan
    Rodino, Luigi
    NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 : 15 - +
  • [4] Microlocal analysis for Gelfand-Shilov spaces
    Rodino, Luigi
    Wahlberg, Patrik
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (05) : 2379 - 2420
  • [5] The wavelet transforms in Gelfand-Shilov spaces
    Pilipovic, Stevan
    Rakic, Dusan
    Teofanov, Nenad
    Vindas, Jasson
    COLLECTANEA MATHEMATICA, 2016, 67 (03) : 443 - 460
  • [6] ON GELFAND-SHILOV SPACES
    Lutsenko, A. V.
    Musin, I. Kh.
    Yulmukhametov, R. S.
    UFA MATHEMATICAL JOURNAL, 2023, 15 (03): : 88 - 96
  • [7] Composition operators on Gelfand-Shilov classes
    Ariza, Hector
    Fernandez, Carmen
    Galbis, Antonio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [8] Fourier integral operators and Gelfand-Shilov spaces
    Cappiello, M
    Recent Advances in Operator Theory and Its Applications: The Israel Gohberg Anniversary Volume, 2005, 160 : 81 - 100
  • [9] Structural theorems for Gelfand-Shilov spaces
    Budincevic, M.
    Perisic, D.
    Taskovic, M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (3-4) : 223 - 229
  • [10] Fourier Characterizations and Non-triviality of Gelfand-Shilov Spaces, with Applications to Toeplitz Operators
    Petersson, Albin
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (03)