Modelling of capsule-intestine contact for a self-propelled capsule robot via experimental and numerical investigation

被引:39
作者
Guo, Bingyong [1 ]
Liu, Yang [1 ]
Prasad, Shyam [2 ]
机构
[1] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England
[2] Royal Devon & Exeter NHS Fdn Trust, Barrack Rd, Exeter EX2 5DW, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
Capsule endoscopy; Capsule-intestine interaction; Contact pressure; Capsule robot; Experiment; FRICTIONAL RESISTANCE; ENDOSCOPY; ENTEROSCOPY; FABRICATION; DIAGNOSIS;
D O I
10.1007/s11071-019-05061-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper studies the modelling of capsule-intestine contact through experimental and numerical investigation for designing a self-propelled capsule robot moving inside the small intestine for endoscopic diagnosis. Due to the natural peristalsis of the intestinal tract, capsule-intestine contact is multimodal causing intermittent high transit speed for the capsule, which leads to incomplete visualisation of the intestinal surface. Three typical conditions, partial and full contacts, between the small intestine and the capsule, are considered in this work. Extensive experimental testing and finite element analysis are conducted to compare the contact pressure on the capsule. Our analytical, experimental and numerical results show a good agreement. The investigation using a synthetic small intestine shows that the contact pressure could vary from 0.5 to 16 kPa according to different contact conditions, i.e. expanding or contracting due to the peristalsis of the small intestine. Therefore, a proper control method or a robust stabilising mechanism, which can accommodate such a high pressure difference, will be crucial for designing the robot.
引用
收藏
页码:3155 / 3167
页数:13
相关论文
共 27 条
[1]  
Accoto D., 2001, WORLD TRIB C, P728
[2]  
[Anonymous], 1987, CONTACT MECH
[3]  
Gere J.M., 2012, Mechanics of Materials, V8th
[4]   ACG Clinical Guideline: Diagnosis and Management of Small Bowel Bleeding [J].
Gerson, Lauren B. ;
Fidler, Jeff L. ;
Cave, David R. ;
Leighton, Jonathan A. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2015, 110 (09) :1265-1287
[5]   A Legged Anchoring Mechanism for Capsule Endoscopes Using Micropatterned Adhesives [J].
Glass, Paul ;
Cheung, Eugene ;
Sitti, Metin .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (12) :2759-2767
[6]   Microrobots for a Capsule Endoscope [J].
Kim, Byungkyu ;
Park, Sukho ;
Park, Jong-Oh .
2009 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2009, :729-+
[7]   Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application [J].
Kim, J. -S. ;
Sung, I. -H. ;
Kim, Y. -T. ;
Kwon, E. -Y. ;
Kim, D. -E. ;
Jang, Y. H. .
TRIBOLOGY LETTERS, 2006, 22 (02) :143-149
[8]   Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine [J].
Kim, J-S ;
Sung, I-H ;
Kim, Y-T ;
Kim, D-E ;
Jang, Y. H. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2007, 221 (H8) :837-845
[9]   Retention of the capsule endoscope: a single-center experience of 1000 capsule endoscopy procedures [J].
Li, Feng ;
Gurudu, Suryakanth R. ;
De Petris, Giovanni ;
Sharma, Virender K. ;
Shiff, Arthur D. ;
Heigh, Russell I. ;
Fleischer, David E. ;
Post, Janice ;
Erickson, Paula ;
Leighton, Jonathan A. .
GASTROINTESTINAL ENDOSCOPY, 2008, 68 (01) :174-180
[10]   Design and Preliminary Experimental Investigation of a Capsule for Measuring the Small Intestine Contraction Pressure [J].
Li, Pengbo ;
Kothari, Vishal ;
Terry, Benjamin S. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (11) :2702-2708