SMT-Based Reachability Analysis of High Dimensional Interval Max-Plus Linear Systems

被引:7
作者
Mufid, Muhammad Syifa'ul [1 ]
Adzkiya, Dieky [2 ]
Abate, Alessandro [1 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 2JD, England
[2] Inst Teknol Sepuluh Nopember, Dept Math, Surabaya 60111, Indonesia
关键词
Multiprotocol label switching; Algebra; Reachability analysis; Analytical models; Uncertainty; Trajectory; Linear systems; Difference-bound matrices (DBMs); linear real arithmetic (LRA); max-plus linear (MPL) systems; piecewise-affine (PWA) systems; reachability analysis (RA); satisfiability modulo theory (SMT);
D O I
10.1109/TAC.2021.3090525
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article discusses the reachability analysis (RA) of interval max-plus linear (IMPL) systems, a subclass of continuous-space, discrete-event systems defined over the max-plus algebra. Unlike standard max-plus linear systems, where the transition matrix is fixed at each discrete step, IMPL systems allow for uncertainty on state matrices. Given an initial and a target set, we develop algorithms to verify the existence of IMPL system trajectories that, starting from the initial set, eventually reach the target set. We show that RA can be solved by encoding the IMPL system, as well as initial and target sets, into linear real arithmetic expressions, and then checking the satisfaction of a resulting logical formula via a satisfiability modulo theory (SMT) solver. The performance and scalability of the developed SMT-based algorithms are shown to drastically outperform state-of-the-art RA algorithms applied to IMPL systems, which promises to usher their use in practical, industrial-sized IMPL models.
引用
收藏
页码:2700 / 2714
页数:15
相关论文
共 35 条
[1]   Counterexample Guided Inductive Synthesis Modulo Theories [J].
Abate, Alessandro ;
David, Cristina ;
Kesseli, Pascal ;
Kroening, Daniel ;
Polgreen, Elizabeth .
COMPUTER AIDED VERIFICATION (CAV 2018), PT I, 2018, 10981 :270-288
[2]  
Adzkiya D., 2014, LECT NOTES COMPUTER, V8413, P248
[3]   Computational techniques for reachability analysis of Max-Plus-Linear systems [J].
Adzkiya, Dieky ;
De Schutter, Bart ;
Abate, Alessandro .
AUTOMATICA, 2015, 53 :293-302
[4]   Finite Abstractions of Max-Plus-Linear Systems [J].
Adzkiya, Dieky ;
De Schutter, Bart ;
Abate, Alessandro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (12) :3039-3053
[5]  
Adzkiya Dieky., 2014, IFAC Proceedings Volumes, V47, P117
[6]  
Ahmed D., 2020, PROC INT C TOOLS ALG, P97
[7]  
[Anonymous], 2010, SMT LIB STANDARD VER
[8]  
[Anonymous], 1992, Synchronization and linearity. An algebra for discrete event systems
[9]  
Barrett C, 2005, LECT NOTES COMPUT SC, V3576, P20
[10]  
Barrett C., 2018, Handbook of model checking, P305, DOI [DOI 10.1007/978-3-319-10575-811, DOI 10.1007/978-3-319-10575-8_11]