Operator Khintchine inequality in non-commutative probability

被引:41
作者
Buchholz, A [1 ]
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
关键词
D O I
10.1007/PL00004425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the operator T = [GRAPHICS] A(k) x R-k, where A(k) belongs to the Schatten class S-2n and where R-k are non-commutative random variables with mixed moments satisfying a specific condition, we prove the following Khintchine inequality [GRAPHICS] We find the optimal constants D-2n in the case when R-k are the q-Gaussian and circular random variables. Moreover, we show that the moments of any probability symmetric measure appear as the optimal constants for some random variables.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 24 条
[1]   Interacting Fock spaces and Gaussianization of probability measures [J].
Accardi, L ;
Bozejko, M .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (04) :663-670
[2]   COMPUTING NORMS IN GROUP C-STAR-ALGEBRAS [J].
AKEMANN, CA ;
OSTRAND, PA .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (04) :1015-1047
[3]  
[Anonymous], 1992, CRM MONOGRAPH SERIES
[4]  
[Anonymous], STUDIA MATH
[5]   Free hypercontractivity [J].
Biane, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :457-474
[6]   STUDY OF FOURIER COEFFICIENTS OF LP(G) FUNCTIONS [J].
BONAMI, A .
ANNALES DE L INSTITUT FOURIER, 1970, 20 (02) :335-&
[7]  
Bozejko M, 1996, MATH Z, V222, P135
[8]   AN EXAMPLE OF A GENERALIZED BROWNIAN-MOTION [J].
BOZEJKO, M ;
SPEICHER, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (03) :519-531
[9]   q-Gaussian processes: Non-commutative and classical aspects [J].
Bozejko, M ;
Kummerer, B ;
Speicher, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) :129-154
[10]   LAMBDA(P) SETS WITH MINIMAL CONSTANT IN DISCRETE NONCOMMUTATIVE GROUPS [J].
BOZEJKO, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 51 (02) :407-412