Dual spaces of some congruence lattices

被引:11
|
作者
Ploscica, M [1 ]
机构
[1] Slovak Acad Sci, Math Inst, Kosice 04001, Slovakia
关键词
open compact set; Boolean space; congruence lattice;
D O I
10.1016/S0166-8641(02)00259-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any set X and any n greater than or equal to 3 we define a topological space L-n(X) and characterize its closed subspaces if \X\ less than or equal to N-1. As an application we obtain a characterization of congruence lattices of algebras in some varieties of lattices. The spaces L-n(X) are close to Boolean spaces, but they are not Hausdorff. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [41] OPC Lattices and Congruence Heredity
    John W. Snow
    Algebra universalis, 2008, 58 : 59 - 71
  • [42] Automata with Finite Congruence Lattices
    Babcsanyi, Istvan
    ACTA CYBERNETICA, 2007, 18 (01): : 155 - 165
  • [43] Separation in distributive congruence lattices
    Ploscica, M
    ALGEBRA UNIVERSALIS, 2003, 49 (01) : 1 - 12
  • [44] OPC lattices and congruence heredity
    Snow, John W.
    ALGEBRA UNIVERSALIS, 2008, 58 (01) : 59 - 71
  • [45] SEMIGROUPS WITH ATOMISTIC CONGRUENCE LATTICES
    AUINGER, K
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1992, 52 : 88 - 102
  • [46] Automata with finite congruence lattices
    Department of Algebra, Mathematical Institute, Budapest University of Technology and Economics, Egry József u. 1, 1111 Budapest, Hungary
    Acta Cybern, 2007, 1 (155-165):
  • [47] Congruence relations in orthomodular lattices
    Chevalier, G
    TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998: QUANTUM STRUCTURES II, 1998, : 197 - 225
  • [48] CONSTRUCTION OF INTEGRAL CONGRUENCE LATTICES
    KAMARA, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 299 : 280 - 286
  • [49] CONGRUENCE LATTICES OF PSEUDOCOMPLEMENTED SEMILATTICES
    SANKAPPA.HP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A479 - A480
  • [50] Finite modular congruence lattices
    Pál Hegedüs
    Péter P. Pálfy
    algebra universalis, 2005, 54 : 105 - 120