Dual spaces of some congruence lattices

被引:11
|
作者
Ploscica, M [1 ]
机构
[1] Slovak Acad Sci, Math Inst, Kosice 04001, Slovakia
关键词
open compact set; Boolean space; congruence lattice;
D O I
10.1016/S0166-8641(02)00259-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any set X and any n greater than or equal to 3 we define a topological space L-n(X) and characterize its closed subspaces if \X\ less than or equal to N-1. As an application we obtain a characterization of congruence lattices of algebras in some varieties of lattices. The spaces L-n(X) are close to Boolean spaces, but they are not Hausdorff. (C) 2002 Elsevier Science B.V All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Some properties of complete congruence lattices
    R. Giacobazzi
    F. Ranzato
    algebra universalis, 1998, 40 : 189 - 200
  • [2] Some properties of complete congruence lattices
    Giacobazzi, R
    Ranzato, F
    ALGEBRA UNIVERSALIS, 1998, 40 (02) : 189 - 200
  • [3] Correction to "Some properties of complete congruence lattices"
    Roberto Giacobazzi
    Francesco Ranzato
    algebra universalis, 2002, 47 : 213 - 213
  • [4] SOME FINITE CONGRUENCE LATTICES .1.
    TUMA, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1986, 36 (02) : 298 - 330
  • [5] ON CONGRUENCE LATTICES OF LATTICES
    PUDLAK, P
    ALGEBRA UNIVERSALIS, 1985, 20 (01) : 96 - 114
  • [6] CONGRUENCE LATTICES OF FUNCTION LATTICES
    GRATZER, G
    SCHMIDT, ET
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1994, 11 (03): : 211 - 220
  • [7] CONGRUENCE LATTICES OF MODULAR LATTICES
    SCHMIDT, ET
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 43 (1-2): : 129 - 134
  • [8] Congruence lattices of uniform lattices
    Grätzer, G
    Schmidt, ET
    Thomsen, K
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (02): : 247 - 263
  • [9] CONGRUENCE LATTICES OF PLANAR LATTICES
    GRATZER, G
    LAKSER, H
    ACTA MATHEMATICA HUNGARICA, 1992, 60 (3-4) : 251 - 268
  • [10] On the representation of lattices by congruence lattices of semigroups
    Popovich, A. L.
    Repnitskii, V. B.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (02): : 199 - 208