Comprehensive Analysis of Metabolic Genes in Breast Cancer Based on Multi-Omics Data

被引:4
作者
Hua, Yu [1 ]
Gao, Lihong [1 ]
Li, Xiaobo [1 ]
机构
[1] China Med Univ, Affiliated Hosp 1, Dept Nursing, Shenyang, Peoples R China
关键词
breast cancer; prognosis; mutation; metabolism; WGCNA;
D O I
10.3389/pore.2021.1609789
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Reprogramming of cell metabolism is one of the most important hallmarks of breast cancer. This study aimed to comprehensively analyze metabolic genes in the initiation, progression, and prognosis of breast cancer. Materials and Methods: Data from The Cancer Genome Atlas (TCGA) in breast cancer were downloaded including RNA-seq, copy number variation, mutation, and DNA methylation. A gene co-expression network was constructed by the weighted correlation network analysis (WGCNA) package in R. Association of metabolic genes with tumor-related immune cells and clinical parameters were also investigated. Results: We summarized 3,620 metabolic genes and observed mutations in 2,964 genes, of which the most frequently mutated were PIK3CA (51%), TNN (26%), and KMT2C (15%). Four genes (AKT1, ERBB2, KMT2C, and USP34) were associated with survival of breast cancer. Significant association was detected in the tumor mutation burden (TMB) of metabolic genes with T stage (p = 0.045) and N stage (p = 0.004). Copy number variations were significantly associated with recurrence and prognosis of breast cancer. The coexpression network for differentially expressed metabolic genes by WGCNA suggested that the modules were associated with glycerophospholipid, arachidonic acid, carbon, glycolysis/gluconeogenesis, and pyrimidine/purine metabolism. Glycerophospholipid metabolism correlated with most of the immune cells, while arachidonic acid metabolism demonstrated a significant correlation with endothelial cells. Methylation and miRNA jointly regulated 14 metabolic genes while mutation and methylation jointly regulated PIK3R1. Conclusion: Based on multi-omics data of somatic mutation, copy number variation, mRNA expression, miRNA expression, and DNA methylation, we identified a series of differentially expressed metabolic genes. Metabolic genes are associated with tumorrelated immune cells and clinical parameters, which might be therapy targets in future clinical application.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Sequence analysis of mutations and translocations across breast cancer subtypes [J].
Banerji, Shantanu ;
Cibulskis, Kristian ;
Rangel-Escareno, Claudia ;
Brown, Kristin K. ;
Carter, Scott L. ;
Frederick, Abbie M. ;
Lawrence, Michael S. ;
Sivachenko, Andrey Y. ;
Sougnez, Carrie ;
Zou, Lihua ;
Cortes, Maria L. ;
Fernandez-Lopez, Juan C. ;
Peng, Shouyong ;
Ardlie, Kristin G. ;
Auclair, Daniel ;
Bautista-Pina, Veronica ;
Duke, Fujiko ;
Francis, Joshua ;
Jung, Joonil ;
Maffuz-Aziz, Antonio ;
Onofrio, Robert C. ;
Parkin, Melissa ;
Pho, Nam H. ;
Quintanar-Jurado, Valeria ;
Ramos, Alex H. ;
Rebollar-Vega, Rosa ;
Rodriguez-Cuevas, Sergio ;
Romero-Cordoba, Sandra L. ;
Schumacher, Steven E. ;
Stransky, Nicolas ;
Thompson, Kristin M. ;
Uribe-Figueroa, Laura ;
Baselga, Jose ;
Beroukhim, Rameen ;
Polyak, Kornelia ;
Sgroi, Dennis C. ;
Richardson, Andrea L. ;
Jimenez-Sanchez, Gerardo ;
Lander, Eric S. ;
Gabriel, Stacey B. ;
Garraway, Levi A. ;
Golub, Todd R. ;
Melendez-Zajgla, Jorge ;
Toker, Alex ;
Getz, Gad ;
Hidalgo-Miranda, Alfredo ;
Meyerson, Matthew .
NATURE, 2012, 486 (7403) :405-409
[2]   Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease [J].
Bianchini, Giampaolo ;
Balko, Justin M. ;
Mayer, Ingrid A. ;
Sanders, Melinda E. ;
Gianni, Luca .
NATURE REVIEWS CLINICAL ONCOLOGY, 2016, 13 (11) :674-690
[3]   Characterization of PIK3CA and PIK3R1 somatic mutations in Chinese breast cancer patients [J].
Chen, Li ;
Yang, Liu ;
Yao, Ling ;
Kuang, Xia-Ying ;
Zuo, Wen-Jia ;
Li, Shan ;
Qiao, Feng ;
Liu, Yi-Rong ;
Cao, Zhi-Gang ;
Zhou, Shu-Ling ;
Zhou, Xiao-Yan ;
Yang, Wen-Tao ;
Shi, Jin-Xiu ;
Huang, Wei ;
Hu, Xin ;
Shao, Zhi-Ming .
NATURE COMMUNICATIONS, 2018, 9
[4]   Genomic and transcriptional aberrations linked to breast cancer pathophysiologies [J].
Chin, Koei ;
DeVries, Sandy ;
Fridlyand, Jane ;
Spellman, Paul T. ;
Roydasgupta, Ritu ;
Kuo, Wen-Lin ;
Lapuk, Anna ;
Neve, Richard M. ;
Qian, Zuwei ;
Ryder, Tom ;
Chen, Fanqing ;
Feiler, Heidi ;
Tokuyasu, Taku ;
Kingsley, Chris ;
Dairkee, Shanaz ;
Meng, Zhenhang ;
Chew, Karen ;
Pinkel, Daniel ;
Jain, Ajay ;
Ljung, Britt Marie ;
Esserman, Laura ;
Albertson, Donna G. ;
Waldman, Frederic M. ;
Gray, Joe W. .
CANCER CELL, 2006, 10 (06) :529-541
[5]   Priorities for the Primary Prevention of Breast Cancer [J].
Colditz, Graham A. ;
Bohlke, Kari .
CA-A CANCER JOURNAL FOR CLINICIANS, 2014, 64 (03) :186-194
[6]   Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer [J].
Dasgupta, Subhamoy ;
Rajapakshe, Kimal ;
Zhu, Bokai ;
Nikolai, Bryan C. ;
Yi, Ping ;
Putluri, Nagireddy ;
Choi, Jong Min ;
Jung, Sung Y. ;
Coarfa, Cristian ;
Westbrook, Thomas F. ;
Zhang, Xiang H. -F. ;
Foulds, Charles E. ;
Tsai, Sophia Y. ;
Tsai, Ming-Jer ;
O'Malley, Bert W. .
NATURE, 2018, 556 (7700) :249-+
[7]   Metabolic crosstalk in the breast cancer microenvironment [J].
Dias, Ana S. ;
Almeida, Catarina R. ;
Helguero, Luisa A. ;
Duarte, Iola F. .
EUROPEAN JOURNAL OF CANCER, 2019, 121 :154-171
[8]   PI3K Inhibitors in Breast Cancer Therapy [J].
Ellis, Haley ;
Ma, Cynthia X. .
CURRENT ONCOLOGY REPORTS, 2019, 21 (12)
[9]  
Ermert L, 2003, CLIN CANCER RES, V9, P1604
[10]   KMT2C mediates the estrogen dependence of breast cancer through regulation of ERα enhancer function [J].
Gala, Kinisha ;
Li, Qing ;
Sinha, Amit ;
Razavi, Pedram ;
Dorso, Madeline ;
Sanchez-Vega, Francisco ;
Chung, Young Rock ;
Hendrickson, Ronald ;
Hsieh, James J. ;
Berger, Michael ;
Schultz, Nikolaus ;
Pastore, Alessandro ;
Abdel-Wahab, Omar ;
Chandarlapaty, Sarat .
ONCOGENE, 2018, 37 (34) :4692-4710