Analysis of acceleration strategies for restarted minimal residual methods

被引:66
作者
Eiermann, M [1 ]
Ernst, OG
Schneider, O
机构
[1] TU Bergakad Freiberg, Inst Angew Math 2, Freiberg, Germany
[2] TU Bergakad Freiberg, Graduiertenkolleg Raumliche Stat, Freiberg, Germany
关键词
Krylov subspace methods; restarted Krylov subspace methods; augmented Krylov subspace methods; deflated Krylov subspace methods; optimal truncation; GMRES; GMRES(m); Ritz values; harmonic Ritz values; implicitly restarted Arnoldi method;
D O I
10.1016/S0377-0427(00)00398-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an overview of existing strategies which compensate for the deterioration of convergence of minimum residual (MR) Krylov subspace methods due to restarting. We evaluate the popular practice of using nearly invariant subspaces to either augment Krylov subspaces or to construct preconditioners which invert on these subspaces. Tn the case where these spaces are exactly invariant, the augmentation approach is shown to be superior. We further show how a strategy recently introduced by de Sturler for truncating the approximation space of an MR method can be interpreted as a controlled loosening of the condition for global MR approximation based on the canonical angles between subspaces. For the special case of Krylov subspace methods, we give a concise derivation of the role of Ritz and harmonic Ritz values and vectors in the polynomial description of Krylov spaces as well as of the use of the implicitly updated Arnoldi method for manipulating Krylov spaces. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:261 / 292
页数:32
相关论文
共 28 条
[1]   Adaptively preconditioned GMRES algorithms [J].
Baglama, J ;
Calvetti, D ;
Golub, GH ;
Reichel, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :243-269
[2]  
Chapman A, 1997, NUMER LINEAR ALGEBR, V4, P43, DOI 10.1002/(SICI)1099-1506(199701/02)4:1<43::AID-NLA99>3.0.CO
[3]  
2-Z
[4]   Truncation strategies for optimal Krylov subspace methods [J].
De Sturler, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :864-889
[5]   Nested Krylov methods based on GCR [J].
deSturler, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (01) :15-41
[6]  
EIERMANN M, IN PRESS GEOMETRIC A
[7]   VARIATIONAL ITERATIVE METHODS FOR NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
EISENSTAT, SC ;
ELMAN, HC ;
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :345-357
[8]   Restarted GMRES preconditioned by deflation [J].
Erhel, J ;
Burrage, K ;
Pohl, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 69 (02) :303-318
[9]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CONJUGATE-GRADIENT METHOD [J].
FABER, V ;
MANTEUFFEL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (02) :352-362
[10]   QUASI-KERNEL POLYNOMIALS AND THEIR USE IN NON-HERMITIAN MATRIX ITERATIONS [J].
FREUND, RW .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) :135-158