Effect of vibration time on steel fibre distribution and flexural behaviours of steel fibre reinforced concrete with different flowability

被引:31
|
作者
Zhao, Minglei [1 ]
Li, Jie [1 ]
Xie, Yi Min [1 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne 3001, Australia
关键词
Steel fibre reinforced concrete (SFRC); Vibration time; Flexural strength; Flexural toughness; Fracture energy; Steel fibre distribution; MECHANICAL-PROPERTIES; ORIENTATION; STRENGTH; SFRC; DISPERSION; TOUGHNESS; STRAIN; FLOW;
D O I
10.1016/j.cscm.2022.e01114
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The present study aimed to evaluate the effect of vibration time on steel fibre distribution and flexural behaviours of steel fibre reinforced concrete (SFRC) with different flowability, three different vibration times (i.e., 10 s, 30 s and 60 s) were selected to compact SFRC specimens on the vibration table in this study. The flowability of SFRC was represented by the varying slump from 80 mm to 200 mm. The flexural performance tests were conducted on beam specimens under four-point loading. The steel fibres distributed on the cut section of the specimen were counted, and the distribution rate of steel fibre in each layer was statistically analysed. The results showed that a correlation existed between the vibration time and the flowability of SFRC. Increasing the vibration time led to a downward settlement of steel fibres to the bottom layer of specimens and segregation of the concrete matrix of high-flowing SFRC. This resulted in a reduction of flexural strength, toughness and fracture energy. An optimal vibration time should be determined corresponding with the flowability of SFRC to achieve a better flexural performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Flexural strength at high temperatures of a high strength steel and polypropylene fibre concrete
    Caetano, Hugo
    Rodrigues, Joao Paulo C.
    Pimienta, Pierre
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 227
  • [32] Effect of Temperature on Compressive Strength of Steel Fibre Reinforced Concrete
    Jessie, Anita J.
    Santhi, A. S.
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2019, 22 (02): : 233 - 238
  • [33] On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete
    Alberti, M. G.
    Enfedaque, A.
    Galvez, J. C.
    CEMENT & CONCRETE COMPOSITES, 2017, 77 : 29 - 48
  • [34] Characterisation of fibre distribution uniformity in steel fibre-reinforced concrete under microwave-induced heating during casting
    Zhao, Lulu
    Li, Hui
    Mu, Ru
    Zhou, Jian
    Wang, Xiaowei
    Wu, Kai
    Xu, Mingfeng
    Qing, Longbang
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [35] Behavior of steel fibre reinforced concrete in compression
    Dhakal, R. P.
    Wang, C.
    Mander, J. B.
    ISISS 2005: Innovation & Sustainability of Structures, Vol 1-3, 2005, : 1803 - 1813
  • [36] Effect of fibre aspect ratio on the torsional behaviour of steel fibre-reinforced normal weight concrete and lightweight concrete
    Yap, Soon Poh
    Khaw, Kuan Ren
    Alengaram, U. Johnson
    Jumaat, Mohd Zamin
    ENGINEERING STRUCTURES, 2015, 101 : 24 - 33
  • [37] Steel fibre-reinforced concrete: review
    Salem, Nehme
    Ayman, Abeidi
    EPITOANYAG-JOURNAL OF SILICATE BASED AND COMPOSITE MATERIALS, 2023, 75 (01): : 21 - 25
  • [38] Steel fibre reinforced concrete as a structural material
    Blaszczynski, Tomasz
    Przybylska-Falek, Marta
    INNOVATIVE SOLUTIONS IN CONSTRUCTION ENGINEERING AND MANAGEMENT: FLEXIBLE APPROACH, 2015, 122 : 282 - 289
  • [39] Effects of steel fibre-aggregate interaction on mechanical behaviour of steel fibre reinforced concrete
    Ige, Olubisi
    Barnett, Stephanie
    Chiverton, John
    Nassif, Ayman
    Williams, John
    ADVANCES IN APPLIED CERAMICS, 2017, 116 (04) : 193 - 198
  • [40] Predicting the flexural response of steel fibre reinforced concrete prisms using a sectional model
    Amin, Ali
    Foster, Stephen J.
    CEMENT & CONCRETE COMPOSITES, 2016, 67 : 1 - 11