Design, Synthesis, and Biological Evaluation of New 1H-Imidazole-2-Carboxylic Acid Derivatives as Metallo-β-Lactamase Inhibitors

被引:5
作者
Li, Rong [1 ]
Su, Huilin [1 ]
Chen, Wei [1 ]
Yan, Yu-Hang [2 ]
Zhou, Cong [2 ]
Mou, Luohe [1 ]
Yang, Huan [1 ]
Qian, Shan [1 ]
Wang, Zhouyu [3 ]
Yang, Lingling [1 ]
Li, Guo-Bo [2 ]
机构
[1] Xihua Univ, Coll Food & Bioengn, Chengdu 610039, Sichuan, Peoples R China
[2] Sichuan Univ, West China Sch Pharm, Minist Educ, Key Lab Drug Targeting & Drug Delivery Syst, Chengdu 610041, Peoples R China
[3] Xihua Univ, Coll Sci, Chengdu 610039, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Antibiotic resistance; Metallo-?-lactamase; Structure -activity relationship; VIM; Metal -binding pharmacophore; BISTHIAZOLIDINES; RESISTANCE; DISCOVERY;
D O I
10.1016/j.bmc.2022.116993
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As one of important mechanisms to ss-lactam antimicrobial resistance, metallo-ss-lactamases (MBLs) have been receiving increasing worldwide attentions. Ambler subclass B1 MBLs are most clinically relevant, because they can hydrolyze almost all ss-lactams with the exception of monobactams. However, it is still lacking of clinically useful drugs to combat MBL-medicated resistance. We previously identified 1H-imidazole-2-carboxylic acid as a core metal-binding pharmacophore (MBP) to target multiple B1 MBLs. Herein, we report structural optimization of 1H-imidazole-2-carboxylic acid and substituents. Structure-activity relationship (SAR) analyses revealed that replacement of 1H-imidazole-2-carboxylic acid with other structurally highly similar MBPs excepting thiazole-4carboxylic acid resulted in decreased MBL inhibition. Further SAR studies identified more potent inhibitors to MBLs, of which 28 manifested IC50 values of 0.018 mu M for both VIM-2 and VIM-5. The microbiological tests demonstrated that the most tested compounds showed improved synergistic effects; some compounds at 1 mu g/ml were able to reduce meropenem MIC by at least 16-fold, which will be worth further development of new potent inhibitors particularly targeting VIM-type MBLs.
引用
收藏
页数:14
相关论文
共 45 条
[1]   What the Clinical Microbiologist Should Know About Pharmacokinetics/Pharmacodynamics in the Era of Emerging Multidrug Resistance Focusing on β-Lactam/β-Lactamase Inhibitor Combinations [J].
Abodakpi, Henrietta ;
Wanger, Audrey ;
Tam, Vincent H. .
CLINICS IN LABORATORY MEDICINE, 2019, 39 (03) :473-+
[2]   Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design [J].
Bahr, Guillermo ;
Gonzalez, Lisandro J. ;
Vila, Alejandro J. .
CHEMICAL REVIEWS, 2021, 121 (13) :7957-8094
[3]   Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline [J].
Boyd, Sara E. ;
Livermore, David M. ;
Hooper, David C. ;
Hope, William W. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2020, 64 (10)
[4]   Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates [J].
Brem, Juergen ;
Cain, Ricky ;
Cahill, Samuel ;
McDonough, Michael A. ;
Clifton, Ian J. ;
Jimenez-Castellanos, Juan-Carlos ;
Avison, Matthew B. ;
Spencer, James ;
Fishwick, Colin W. G. ;
Schofield, Christopher J. .
NATURE COMMUNICATIONS, 2016, 7
[5]   Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers [J].
Brem, Juergen ;
van Berkel, Sander S. ;
Zollman, David ;
Lee, Sook Y. ;
Gileadi, Opher ;
McHugh, Peter J. ;
Walsh, Timothy R. ;
McDonough, Michael A. ;
Schofield, Christopher J. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (01) :142-150
[6]   Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors [J].
Brem, Jurgen ;
Panduwawala, Tharindi ;
Hansen, Jon Ulf ;
Hewitt, Joanne ;
Liepins, Edgars ;
Donets, Pawel ;
Espina, Laura ;
Farley, Alistair J. M. ;
Shubin, Kirill ;
Campillos, Gonzalo Gomez ;
Kiuru, Paula ;
Shishodia, Shifali ;
Krahn, Daniel ;
Lesniak, Robert K. ;
Schmidt , Juliane ;
Calvopina, Karina ;
Turrientes, Maria-Carmen ;
Kavanagh, Madeline E. ;
Lubriks, Dmitrijs ;
Hinchliffe, Philip ;
Langley, Gareth W. ;
Aboklaish, Ali F. ;
Eneroth, Anders ;
Backlund, Maria ;
Baran, Andrei G. ;
Nielsen, Elisabet, I ;
Speake, Michael ;
Kuka, Janis ;
Robinson, John ;
Grinberga, Solveiga ;
Robinson, Lindsay ;
McDonough, Michael A. ;
Rydzik, Anna M. ;
Leissing, Thomas M. ;
Jimenez-Castellanos, Juan Carlos ;
Avison, Matthew B. ;
Pinto, Solange Da Silva ;
Pannifer, Andrew D. ;
Martjuga, Marina ;
Widlake, Emma ;
Priede, Martins ;
Navratilova, Iva Hopkins ;
Gniadkowski, Marek ;
Belfrage, Anna Karin ;
Brandt, Peter ;
Yli-Kauhaluoma, Jari ;
Bacque, Eric ;
Page, Malcolm G. P. ;
Bjorkling, Fredrik ;
Tyrrell, Jonathan M. .
NATURE CHEMISTRY, 2022, 14 (01) :15-+
[7]   Challenges in the Development of a Thiol-Based Broad-Spectrum Inhibitor for Metallo-β-Lactamases [J].
Buettner, Dominik ;
Kramer, Jan S. ;
Klingler, Franca-M. ;
Wittmann, Sandra K. ;
Hartmann, Markus R. ;
Kurz, Christian G. ;
Kohnhaeuser, Daniel ;
Weizel, Lilia ;
Brueggerhoff, Astrid ;
Frank, Denia ;
Steinhilber, Dieter ;
Wichelhaus, Thomas A. ;
Pogoryelov, Denys ;
Proschak, Ewgenij .
ACS INFECTIOUS DISEASES, 2018, 4 (03) :360-372
[8]   Updated Functional Classification of β-Lactamases [J].
Bush, Karen ;
Jacoby, George A. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (03) :969-976
[9]   Interplay between β-lactamases and new β-lactamase inhibitors [J].
Bush, Karen ;
Bradford, Patricia A. .
NATURE REVIEWS MICROBIOLOGY, 2019, 17 (05) :295-306
[10]   Game Changers: New β-Lactamase Inhibitor Combinations Targeting Antibiotic Resistance in Gram-Negative Bacteria [J].
Bush, Karen .
ACS INFECTIOUS DISEASES, 2018, 4 (02) :84-87