Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

被引:70
|
作者
Miller, Jeffrey B.
Radu, Iuliana P.
Zumbuehl, Dominik M.
Levenson-Falk, Eli M.
Kastner, Marc A.
Marcus, Charles M. [1 ]
Pfeiffer, Loren N.
West, Ken W.
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
[4] Univ Basel, Dept Phys & Astron, CH-4056 Basel, Switzerland
[5] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nphys658
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent theories suggest that the quasiparticles that populate certain quantum Hall states should exhibit exotic braiding statistics that could be used to build topological quantum gates. Confined systems that support such states at a filling fraction nu = 5/2 are of particular interest for testing these predictions. Here, we report transport measurements of just such a system, which consists of a quantum point contact (QPC) in a two-dimensional GaAs/AlGaAs electron gas that itself exhibits a well-developed fractional quantum Hall effect at a bulk filling fraction nu(bulk) = 5/2. We observe plateau-like features at an effective filling fraction of nu(QPC) = 5/2 for lithographic contact widths of 1.2 mu m and 0.8 mu m, but not 0.5 mu m. Transport near nu(QPC) = 5/2 in the QPCs is consistent with a picture of chiral Luttinger-liquid edge states with inter-edge tunnelling, suggesting that an incompressible state at nu(QPC) = 5/2 forms in this confined geometry.
引用
收藏
页码:561 / 565
页数:5
相关论文
共 50 条
  • [1] Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2
    Jeffrey B. Miller
    Iuliana P. Radu
    Dominik M. Zumbühl
    Eli M. Levenson-Falk
    Marc A. Kastner
    Charles M. Marcus
    Loren N. Pfeiffer
    Ken W. West
    Nature Physics, 2007, 3 : 561 - 565
  • [2] Many-body study of a quantum point contact in the fractional quantum Hall regime at ν=5/2
    Soule, Paul
    Jolicoeur, Thierry
    Lecheminant, Philippe
    PHYSICAL REVIEW B, 2013, 88 (23)
  • [3] Bosonic Halperin(441) Fractional Quantum Hall Effect at Filling Factor ν = 2/5
    曾天生
    胡梁栋
    朱伟
    Chinese Physics Letters, 2022, 39 (01) : 39 - 44
  • [4] Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor ν=2/5
    Zeng, Tian-Sheng
    Hu, Liangdong
    Zhu, W.
    CHINESE PHYSICS LETTERS, 2022, 39 (01)
  • [5] Bosonic Halperin(441) Fractional Quantum Hall Effect at Filling Factor ν = 2/5
    曾天生
    胡梁栋
    朱伟
    Chinese Physics Letters, 2022, (01) : 39 - 44
  • [6] Breakdown of the integer and fractional quantum Hall states in a quantum point contact
    Dillard, C.
    Lin, X.
    Kastner, M. A.
    Pfeiffer, L. N.
    West, K. W.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 47 : 290 - 296
  • [7] The quantum Hall effect at 5/2 filling factor
    Willett, R. L.
    REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (07)
  • [8] A FRACTION OF THE FRACTIONAL QUANTUM HALL-EFFECT
    BOEBINGER, GS
    PHYSICA B, 1989, 155 (1-3): : 347 - 352
  • [9] Recent experimental progress of fractional quantum Hall effect: 5/2 filling state and graphene
    Lin, Xi
    Du, Ruirui
    Xie, Xincheng
    NATIONAL SCIENCE REVIEW, 2014, 1 (04) : 564 - 579
  • [10] Filling factor dependence of the fractional quantum hall effect gap
    Khrapai, V. S.
    Shashkin, A. A.
    Trokina, M. G.
    Dolgopolov, V. T.
    Pellegrini, V.
    Beltram, F.
    Biasiol, G.
    Sorba, L.
    PHYSICAL REVIEW LETTERS, 2008, 100 (19)