Mean Field Multi-Agent Reinforcement Learning

被引:0
|
作者
Yang, Yaodong [1 ]
Luo, Rui [1 ]
Li, Minne [1 ]
Zhou, Ming [2 ]
Zhang, Weinan [2 ]
Wang, Jun [1 ]
机构
[1] UCL, London, England
[2] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80 | 2018年 / 80卷
关键词
GAMES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing multi-agent reinforcement learning methods are limited typically to a small number of agents. When the agent number increases largely, the learning becomes intractable due to the curse of the dimensionality and the exponential growth of agent interactions. In this paper, we present Mean Field Reinforcement Learning where the interactions within the population of agents are approximated by those between a single agent and the average effect from the overall population or neighboring agents; the interplay between the two entities is mutually reinforced: the learning of the individual agent's optimal policy depends on the dynamics of the population, while the dynamics of the population change according to the collective patterns of the individual policies. We develop practical mean field Q-learning and mean field Actor-Critic algorithms and analyze the convergence of the solution to Nash equilibrium. Experiments on Gaussian squeeze, Ising model, and battle games justify the learning effectiveness of our mean field approaches. In addition, we report the first result to solve the Ising model via model-free reinforcement learning methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Aggregation Transfer Learning for Multi-Agent Reinforcement learning
    Xu, Dongsheng
    Qiao, Peng
    Dou, Yong
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 547 - 551
  • [32] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [33] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [34] Concept Learning for Interpretable Multi-Agent Reinforcement Learning
    Zabounidis, Renos
    Campbell, Joseph
    Stepputtis, Simon
    Hughes, Dana
    Sycara, Katia
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1828 - 1837
  • [35] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [36] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [37] Generalized learning automata for multi-agent reinforcement learning
    De Hauwere, Yann-Michael
    Vrancx, Peter
    Nowe, Ann
    AI COMMUNICATIONS, 2010, 23 (04) : 311 - 324
  • [38] Multi-agent reinforcement learning for character control
    Li, Cheng
    Fussell, Levi
    Komura, Taku
    VISUAL COMPUTER, 2021, 37 (12): : 3115 - 3123
  • [39] Parallel and distributed multi-agent reinforcement learning
    Kaya, M
    Arslan, A
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, : 437 - 441
  • [40] Reinforcement learning of multi-agent communicative acts
    Hoet S.
    Sabouret N.
    Revue d'Intelligence Artificielle, 2010, 24 (02) : 159 - 188