ON A CLASS OF ANALYTIC FUNCTION RELATED TO SCHWARZ LEMMA

被引:1
作者
Ornek, Bulent Nafi [1 ]
机构
[1] Amasya Univ, Dept Comp Engn, Merkez Amasya, Turkey
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2022年 / 29卷 / 01期
关键词
analytic function; Schwarz lemma; BOUNDARY ANALYSIS; INEQUALITY;
D O I
10.7468/jksmeb.2022.29.1.113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we plan to introduce the class of the analytic functions called P (b) and to investigate the various properties of the functions belonging this class. The modulus of the second coefficient c(2) in the expansion of f (z) = z+c(2)z(2)+... belonging to the given class will be estimated from above. Also, we estimate a modulus of the second angular derivative of f (z) function at the boundary point alpha with f' (alpha) = 1 - b, b is an element of C, by taking into account their first nonzero two Maclaurin coefficients.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 15 条
[1]   Some Remarks on Schwarz Lemma at the Boundary [J].
Akyel, Tugba ;
Ornek, Bulent Nafi .
FILOMAT, 2017, 31 (13) :4139-4151
[2]  
[Anonymous], 1992, BOUNDARY BEHAV CONFO
[3]   A refined Schwarz inequality on the boundary [J].
Azeroglu, T. Aliyev ;
Ornek, B. N. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (04) :571-577
[4]   Julius and Julia: Mastering the Art of the Schwarz Lemma [J].
Boas, Harold P. .
AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (09) :770-785
[5]  
Dubinin V. N., 2004, J. Math. Sci., V122, P3623, DOI [10.1023/B:JOTH.0000035237.43977.39, DOI 10.1023/B:JOTH.0000035237.43977.39]
[6]  
Golusin G.M., 1969, Geometric Theory of Functions of One Complex Variable
[7]  
Mateljevi~c M., APPL ANAL DISCR MATH, DOI [10.13140/RG.2.2.25744.15369, DOI 10.13140/RG.2.2.25744.15369]
[8]   Schwarz Lemma, and Distortion for Harmonic Functions Via Length and Area [J].
Mateljevic, M. .
POTENTIAL ANALYSIS, 2020, 53 (04) :1165-1190
[9]  
Mercer P.R.., 2018, Journal of Classical Analysis, V12, P93, DOI DOI 10.7153/JCA-2018-12-08
[10]   An improved Schwarz Lemma at the boundary [J].
Mercer, Peter R. .
OPEN MATHEMATICS, 2018, 16 :1140-1144