Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight
被引:101
作者:
Kim, JK
论文数: 0引用数: 0
h-index: 0
机构:
Myongji Univ, Dept Biol Sci, Yongin 449728, South KoreaMyongji Univ, Dept Biol Sci, Yongin 449728, South Korea
Kim, JK
[1
]
Jang, IC
论文数: 0引用数: 0
h-index: 0
机构:Myongji Univ, Dept Biol Sci, Yongin 449728, South Korea
Jang, IC
Wu, R
论文数: 0引用数: 0
h-index: 0
机构:Myongji Univ, Dept Biol Sci, Yongin 449728, South Korea
Wu, R
Zu, WN
论文数: 0引用数: 0
h-index: 0
机构:Myongji Univ, Dept Biol Sci, Yongin 449728, South Korea
Zu, WN
Boston, RS
论文数: 0引用数: 0
h-index: 0
机构:Myongji Univ, Dept Biol Sci, Yongin 449728, South Korea
Boston, RS
Lee, YH
论文数: 0引用数: 0
h-index: 0
机构:Myongji Univ, Dept Biol Sci, Yongin 449728, South Korea
Lee, YH
Alm, P
论文数: 0引用数: 0
h-index: 0
机构:Myongji Univ, Dept Biol Sci, Yongin 449728, South Korea
Alm, P
Nahm, BH
论文数: 0引用数: 0
h-index: 0
机构:Myongji Univ, Dept Biol Sci, Yongin 449728, South Korea
Nahm, BH
机构:
[1] Myongji Univ, Dept Biol Sci, Yongin 449728, South Korea
[2] Cornell Univ, Sect Mol Biol & Genet, Ithaca, NY 14853 USA
[3] N Carolina State Univ, Dept Bot, Raleigh, NC 27695 USA
[4] Seoul Natl Univ, Sch Agr Biotechnol, Suwon 441744, South Korea
Chitinases, beta-1,3-glucanases, and ribosome-inactivating proteins are reported to have antifungal activity in plants. With the aim of producing fungus-resistant transgenic plants, we co-expressed a modified maize ribosome-inactivating protein gene, MOD1, and a rice basic chitinase gene, RCH10, in transgenic rice plants. A construct containing MOD1 and RCH10 under the control of the rice rbcS and Act1 promoters, respectively, was cotransformed with a plasmid containing the herbicide-resistance gene bar as a selection marker into rice by particle bombardment. Several transformants analyzed by genomic Southem-blot hybridization demonstrated integration of multiple copies of the foreign gene into rice chromosomes. Immunoblot experiments showed that MOD1 formed approximately 0.5% of the total soluble protein in transgenic leaves. RCH10 expression was examined using the native polyacrylamide-overlay gel method, and high RCH10 activity was observed in leaf tissues where endogenous RCH10 is not expressed. R-1 plants were analyzed in a similar way, and the Southem-blot patterns and levels of transgene expression remained the same as in the parental line. Analysis of the response of R-2 plants to three fungal pathogens of rice, Rhizoctonia solani, Bipolaris oryzae, and Magnaporthe grisea, indicated statistically significant symptom reduction only in the case of R. solani (sheath blight). The increased resistance co-segregated with herbicide tolerance, reflecting a correlation between the resistance phenotype and transgene expression.