TREE SPECIES CLASSIFICATION BASED ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA

被引:2
|
作者
Lu, Xukun [1 ]
Liu, Gang [1 ]
Ning, Silan [2 ]
Su, Zhonghua [2 ]
He, Ze [2 ]
机构
[1] China Acad Elect & Informat Technol, 11 Shuangyuan Rd, Beijing 10041, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Resources & Environm, 2006 Xiyuan Ave, Chengdu 611731, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
关键词
hyperspectral image; airborne LiDAR; feature extraction; tree species classification; INDIVIDUAL TREES; BIOMASS;
D O I
10.1109/IGARSS39084.2020.9324266
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Forest resources are of great significance in regulating climate, maintaining biodiversity, and providing ecological products. Accurate identification of tree species is the basis for research and utilization of forest resources. This study combined the characteristics of multi-source data, based on the AISA EAGLE II hyperspectral images and airborne LiDAR point clouds which were obtained in August, 2016. Point cloud characteristics, spectral and texture characteristics were extracted from both datasets. Then SVM was used to classify the main tree species of Genhe experimental area. The results showed that tree species classification accuracy can be improved by using airborne LiDAR and hyperspectral image features.
引用
收藏
页码:2787 / 2790
页数:4
相关论文
共 50 条
  • [1] Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data
    Wu, Yanshuang
    Zhang, Xiaoli
    FORESTS, 2020, 11 (01):
  • [2] Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data
    Shen, Xin
    Cao, Lin
    REMOTE SENSING, 2017, 9 (11):
  • [3] Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data
    Yuanyong Dian
    Yong Pang
    Yanfang Dong
    Zengyuan Li
    Journal of the Indian Society of Remote Sensing, 2016, 44 : 595 - 603
  • [4] Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data
    Dian, Yuanyong
    Pang, Yong
    Dong, Yanfang
    Li, Zengyuan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2016, 44 (04) : 595 - 603
  • [5] Tree-Species Classification and Individual-Tree-Biomass Model Construction Based on Hyperspectral and LiDAR Data
    Qiao, Yifan
    Zheng, Guang
    Du, Zihan
    Ma, Xiao
    Li, Jiarui
    Moskal, L. Monika
    REMOTE SENSING, 2023, 15 (05)
  • [6] Forest Tree species Classification Based on Airborne Hyperspectral Imagery
    Dian, Yuanyong
    Li, Zengyuan
    Pang, Yong
    MIPPR 2013: REMOTE SENSING IMAGE PROCESSING, GEOGRAPHIC INFORMATION SYSTEMS, AND OTHER APPLICATIONS, 2013, 8921
  • [7] Tree Species Classification Using Airborne LiDAR Data Based on Individual Tree Segmentation and Shape Fitting
    Qian, Chen
    Yao, Chunjing
    Ma, Hongchao
    Xu, Junhao
    Wang, Jie
    REMOTE SENSING, 2023, 15 (02)
  • [8] A Review of Tree Species Classification Based on Airborne LiDAR Data and Applied Classifiers
    Michalowska, Maja
    Rapinski, Jacek
    REMOTE SENSING, 2021, 13 (03) : 1 - 27
  • [9] Tree species classification of airborne LiDAR data based on 3D deep learning
    Liu M.
    Han Z.
    Chen Y.
    Liu Z.
    Han Y.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2022, 44 (02): : 123 - 130
  • [10] Airborne hyperspectral data for the classification of tree species a temperate forests
    Wietecha, Martyna
    Modzelewska, Aneta
    Sterenczak, Krzysztof
    SYLWAN, 2017, 161 (01): : 3 - 17