Artificial neural network modelling as an aid to source rock characterization

被引:75
作者
Huang, ZH
Williamson, MA
机构
[1] Geological Survey of Canada Atlantic, Dartmouth, NS B2Y 4A2
关键词
artificial neural network; source rock characterization; Jeanne d'Arc Basin;
D O I
10.1016/0264-8172(95)00062-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A data-based approach is used to establish detailed and accurate geochemical characterization in oil source rock intervals, using well logs and noisy information from cuttings. The method starts by extracting examples from the intervals of interest, using generalized relationships between total organic content (TOC) and well log responses. The examples were used to train an artificial neural network (ANN) that extracted more detailed and accurate relationships between TOC and well-log responses specific to the study area. A combination of the 'quickprop' algorithm and 'Dynamic Node Creation' scheme was utilized to facilitate efficient training. The trained ANN is useful for mapping source rock intervals in the area of interest. This method performs satisfactorily when applied to the Eg ret source rock of the Jeanne d'Arc Basin, offshore eastern Canada.
引用
收藏
页码:277 / 290
页数:14
相关论文
共 50 条
[31]   Source localization based on ray theory and artificial neural network [J].
Too, Gee-Pinn James ;
Lin, E-Shine ;
Hsieh, Yu-Haw .
OCEANS 2006 - ASIA PACIFIC, VOLS 1 AND 2, 2006, :30-37
[32]   Acoustic emission source location based on artificial neural network [J].
Zhu, Yueqing ;
Tao, Chuanyi ;
Gao, Xiaofeng ;
Li, Jingke ;
Wang, Wei ;
Wang, Hao ;
Zhang, Jingnan ;
Li, Yubing .
NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XVI, 2022, 12047
[33]   Prediction of Lumbar Disc Herniation Patients' Satisfaction with the Aid of an Artificial Neural Network [J].
Matis, Georgios K. ;
Chrysou, Olga I. ;
Silva, Danilo ;
Karanikas, Michail A. ;
Baltsavias, Gerasimos ;
Lyratzopoulos, Nikolaos ;
Baroutas, Spyridon ;
Birbilis, Theodossios A. .
TURKISH NEUROSURGERY, 2016, 26 (02) :253-259
[34]   Arrhythmia Modelling via ECG Characteristic Frequencies and Artificial Neural Network [J].
Jalil, M. H. F. Mohd ;
Saaid, M. F. ;
Ahmad, A. ;
Ali, M. S. A. Megat .
2014 IEEE CONFERENCE ON SYSTEMS, PROCESS AND CONTROL (ICSPC 2014), 2014, :121-126
[35]   River Water Quality Modelling using Artificial Neural Network Technique [J].
Sarkar, Archana ;
Pandey, Prashant .
INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE'15), 2015, 4 :1070-1077
[36]   Hybrid artificial neural network and structural equation modelling techniques: a survey [J].
Albahri, A. S. ;
Alnoor, Alhamzah ;
Zaidan, A. A. ;
Albahri, O. S. ;
Hameed, Hamsa ;
Zaidan, B. B. ;
Peh, S. S. ;
Zain, A. B. ;
Siraj, S. B. ;
Masnan, A. H. B. ;
Yass, A. A. .
COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (02) :1781-1801
[37]   Hybrid artificial neural network and structural equation modelling techniques: a survey [J].
A. S. Albahri ;
Alhamzah Alnoor ;
A. A. Zaidan ;
O. S. Albahri ;
Hamsa Hameed ;
B. B. Zaidan ;
S. S. Peh ;
A. B. Zain ;
S. B. Siraj ;
A. H. B. Masnan ;
A. A. Yass .
Complex & Intelligent Systems, 2022, 8 :1781-1801
[38]   Artificial neural network forward modelling and inversion of electrokinetic logging data [J].
Ardjmandpour, N. ;
Pain, C. ;
Singer, J. ;
Saunders, J. ;
Aristodemou, E. ;
Carter, J. .
GEOPHYSICAL PROSPECTING, 2011, 59 (04) :721-748
[39]   Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network [J].
Bryjak, J ;
Ciesielski, K ;
Zbicinski, I .
JOURNAL OF BIOTECHNOLOGY, 2004, 114 (1-2) :177-185
[40]   Modelling of a direct evaporative air cooler using artificial neural network [J].
Hosoz, M. ;
Ertunc, H. M. ;
Ozguc, A. F. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2008, 32 (01) :83-89