Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations

被引:48
|
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [3 ]
Lopes, Antonio M. [4 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 72卷
关键词
Fractional integro-differential equation; Spectral collocation method; Jacobi-Gauss quadrature; Riemann-Liouville derivative; NUMERICAL-SOLUTION; DIFFUSION EQUATION; ORDER; TRANSPORT; MATRIX;
D O I
10.1016/j.cnsns.2019.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new shifted Jacobi-Gauss-collocation (SJ-G-C) algorithm is presented for solving numerically several classes of fractional integro-differential equations (FI-DEs), namely Volterra, Fredholm and systems of Volterra FI-DEs, subject to initial and nonlocal boundary conditions. The new SJ-G-C method is also extended for calculating the solution of mixed Volterra-Fredholm FI-DEs. The shifted Jacobi-Gauss points are adopted for collocation nodes and the FI-DEs are reduced to systems of algebraic equations. Error analysis is performed and several numerical examples are given for illustrating the advantages of the new algorithm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 359
页数:18
相关论文
共 50 条
  • [21] Galerkin and Collocation Methods for Weakly Singular Fractional Integro-differential Equations
    Sharma, Shiva
    Pandey, Rajesh K.
    Kumar, Kamlesh
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A4): : 1649 - 1656
  • [22] Collocation methods for fractional integro-differential equations with weakly singular kernels
    Jingjun Zhao
    Jingyu Xiao
    Neville J. Ford
    Numerical Algorithms, 2014, 65 : 723 - 743
  • [23] SPECTRAL-COLLOCATION METHOD FOR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 203 - 224
  • [24] Numerical solution of fractional integro-differential equations by a hybrid collocation method
    Ma, Xiaohua
    Huang, Chengming
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) : 6750 - 6760
  • [25] Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method
    Amin, Rohul
    Ahmad, Hijaz
    Shah, Kamal
    Hafeez, M. Bilal
    Sumelka, W.
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [26] Application of the collocation method for solving nonlinear fractional integro-differential equations
    Eslahchi, M. R.
    Dehghan, Mehdi
    Parvizi, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 257 : 105 - 128
  • [27] Shifted Fractional-Order Jacobi Collocation Method for Solving Variable-Order Fractional Integro-Differential Equation with Weakly Singular Kernel
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Lopes, Antonio M.
    Hashim, Ishak
    Babatin, Mohammed M.
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [28] Collocation Method for Solving Two-Dimensional Fractional Volterra Integro-Differential Equations
    Kazemi, S.
    Tari, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (06): : 1629 - 1639
  • [29] Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis
    H. R. Marasi
    M. H. Derakhshan
    Computational and Applied Mathematics, 2022, 41
  • [30] Runge-Kutta convolution quadrature methods with convergence and stability analysis for nonlinear singular fractional integro-differential equations
    Zhang, Gengen
    Zhu, Rui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84 (84):