Shifted Jacobi-Gauss-collocation with convergence analysis for fractional integro-differential equations

被引:50
作者
Doha, E. H. [1 ]
Abdelkawy, M. A. [2 ,3 ]
Amin, A. Z. M. [3 ]
Lopes, Antonio M. [4 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, Coll Sci, Riyadh, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Univ Porto, Fac Engn, UISPA LAETA INEGI, Porto, Portugal
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 72卷
关键词
Fractional integro-differential equation; Spectral collocation method; Jacobi-Gauss quadrature; Riemann-Liouville derivative; NUMERICAL-SOLUTION; DIFFUSION EQUATION; ORDER; TRANSPORT; MATRIX;
D O I
10.1016/j.cnsns.2019.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new shifted Jacobi-Gauss-collocation (SJ-G-C) algorithm is presented for solving numerically several classes of fractional integro-differential equations (FI-DEs), namely Volterra, Fredholm and systems of Volterra FI-DEs, subject to initial and nonlocal boundary conditions. The new SJ-G-C method is also extended for calculating the solution of mixed Volterra-Fredholm FI-DEs. The shifted Jacobi-Gauss points are adopted for collocation nodes and the FI-DEs are reduced to systems of algebraic equations. Error analysis is performed and several numerical examples are given for illustrating the advantages of the new algorithm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 359
页数:18
相关论文
共 46 条
[1]  
Abdelkawy MA, 2017, P ROMANIAN ACAD A, V18, P199
[2]   Jacobi Collocation Approximation for Solving Multi-dimensional Volterra Integral Equations [J].
Abdelkawy, Mohamed A. ;
Amin, Ahmed Z. M. ;
Bhrawy, Ali H. ;
Tenreiro Machado, Jose A. ;
Lopes, Antonio M. .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (05) :411-425
[3]  
Amin A. Z., 2016, Comput. Math. Appl., V4, P1, DOI [10.1016/j.camwa.2016.04.011, DOI 10.1016/J.CAMWA.2016.04.011]
[4]  
Atangana A., 2013, ABSTR APPL ANAL, V2013, DOI DOI 10.1155/2013/769102
[5]   Efficient Spectral Collocation Algorithm for a Two-Sided Space Fractional Boussinesq Equation with Non-local Conditions [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Ezz-Eldien, S. S. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :2483-2506
[6]   A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation [J].
Bhrawy, A. H. ;
Zaky, M. A. ;
Van Gorder, R. A. .
NUMERICAL ALGORITHMS, 2016, 71 (01) :151-180
[7]   A spectral technique for solving two-dimensional fractional integral equations with weakly singular kernel [J].
Bhrawy, Ali H. ;
Abdelkawy, Mohamed A. ;
Baleanu, Dumitru ;
Amin, Ahmed Z. M. .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03) :553-566
[8]   Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrodinger equations [J].
Bhrawy, Ali H. ;
Alzaidy, Jameel F. ;
Abdelkawy, Mohamed A. ;
Biswas, Anjan .
NONLINEAR DYNAMICS, 2016, 84 (03) :1553-1567
[9]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[10]   Spectral technique for solving variable-order fractional Volterra integro-differential equations [J].
Doha, E. H. ;
Abdelkawy, M. A. ;
Amin, A. Z. M. ;
Baleanu, D. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) :1659-1677