Multi-soliton and Pfaffian solutions of a (2+1)-dimensional nonlinear evolution equation via the Jaulent-Miodek hierarchy

被引:3
作者
Meng, Gao-Qing [1 ,2 ,3 ]
Gao, Yi-Tian [1 ,2 ,4 ]
Yu, Xin [1 ,2 ]
Qin, Yi [1 ,2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] N China Elect Power Univ, Dept Math & Phys, Baoding 071003, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Jaulent-Miodek hierarchy; Bilinear form; Soliton interaction; N-soliton solution; Pfaffian; Symbolic computation; COMPACTON-LIKE SOLUTION; N-SOLITON SOLUTIONS; DARBOUX TRANSFORMATIONS; KP EQUATION; BACKLUND-TRANSFORMATIONS; SCHRODINGER-EQUATION; PAINLEVE ANALYSIS; SHALLOW-WATER; CONSTRUCTION; REDUCTIONS;
D O I
10.1016/j.amc.2012.03.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under investigation in this paper is a (2 + 1)-dimensional nonlinear evolution equation generated by the Jaulent-Miodek hierarchy. Via the Hirota bilinear method, multi-soliton solutions of such equation are obtained. Soliton propagation and interactions are analyzed, and both the elastic and inelastic interactions are seen with some parameters selected. Furthermore, it is proved that the equation possesses the N-soliton solutions expressed in terms of Gramm-type Pfaffian, and can be written in the form of a Pfaffian identity. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:10791 / 10802
页数:12
相关论文
共 65 条
[1]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[2]  
[Anonymous], 1991, LONDON MATH SOC LECT
[3]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]   Decomposition to the modified Jaulent-Miodek hierarchy [J].
Chen, Jinbing ;
Geng, Xianguo .
CHAOS SOLITONS & FRACTALS, 2006, 30 (04) :797-803
[6]   Nonclassical symmetry reductions of the Boussinesq equation [J].
Clarkson, PA .
CHAOS SOLITONS & FRACTALS, 1995, 5 (12) :2261-2301
[7]   OBSERVATION OF A KINK SOLITON ON THE SURFACE OF A LIQUID [J].
DENARDO, B ;
WRIGHT, W ;
PUTTERMAN, S ;
LARRAZA, A .
PHYSICAL REVIEW LETTERS, 1990, 64 (13) :1518-1521
[8]   The multisoliton solutions for the nonisospectral mKPI equation with self-consistent sources [J].
Deng, Shu-fang .
PHYSICS LETTERS A, 2008, 372 (04) :460-464
[9]   The multisoliton solutions for the nonisospectral mKP equation [J].
Deng, Shu-Fang .
PHYSICS LETTERS A, 2007, 362 (2-3) :198-204
[10]   The decay mode solutions for the cylindrical KP equation [J].
Deng, Shu-fang .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (10) :5974-5981