The Oxidative Potential of Personal and Household PM2.5 in a Rural Setting in Southwestern China

被引:44
|
作者
Brehmer, Collin [1 ]
Lai, Alexandra [1 ]
Clark, Sierra [2 ,3 ]
Shan, Ming [4 ]
Ni, Kun [4 ]
Ezzati, Majid [5 ]
Yang, Xudong [4 ]
Baumgartner, Jill [2 ,3 ]
Schauer, James J. [1 ,6 ]
Carter, Ellison [7 ]
机构
[1] Univ Wisconsin, Environm Chem & Technol Program, Madison, WI 53706 USA
[2] McGill Univ, Inst Hlth & Social Policy, Montreal, PQ H3A 1A3, Canada
[3] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Montreal, PQ H3A 1A3, Canada
[4] Tsinghua Univ, Dept Bldg Sci, Beijing 100084, Peoples R China
[5] Imperial Coll London, MRC PHE Ctr Environm & Hlth, Dept Epidemiol Biostat & Occupat Hlth, Sch Publ Hlth, London W2 1PG, England
[6] Univ Wisconsin, Wisconsin State Lab Hyg, Madison, WI 53718 USA
[7] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80523 USA
关键词
AIRBORNE PARTICULATE MATTER; COMPARATIVE RISK-ASSESSMENT; AIR-POLLUTION EXPOSURES; OXYGEN SPECIES ROS; CHEMICAL-COMPOSITION; SOURCE APPORTIONMENT; TRACE-ELEMENTS; REDOX ACTIVITY; HUMAN HEALTH; UTAH VALLEY;
D O I
10.1021/acs.est.8b05120
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The chemical constituents of fine particulate matter (PM2.5) vary by source and capacity to participate in redox reactions in the body, which produce cytotoxic reactive oxygen species (ROS). Knowledge of the sources and components of PM2.5 may provide insight into the adverse health effects associated with the inhalation of PM2.5 mass. We collected 48 h household and personal PM2.5 exposure measurements in the summer months among SO women/household pairs in a rural area of southwestern China where daily household biomass burning is common. PM2.5 mass was analyzed for ions, trace metals, black carbon, and water-soluble organic matter, as well as ROS-generating capability (oxidative potential) by one cellular and one acellular assay. Crustal enrichment factors and a principal component analysis identified the major sources of PM2.5 as dust, biomass burning, and secondary sulfate. Elements associated with the secondary sulfate source (As, Mo, Zn) had the strongest correlation with increased cellular oxidative potential (Spearman r: 0.74, 0.68, and 0.64). Chemical markers of biomass burning (water-soluble potassium and water-soluble organic matter) had negligible oxidative potential, suggesting that these assays may not be useful as health-relevant exposure metrics in populations that are exposed to high levels of smoke from household biomass burning.
引用
收藏
页码:2788 / 2798
页数:11
相关论文
共 50 条
  • [21] Personal Exposure to PM2.5 Oxidative Potential in Association with Pulmonary Pathophysiologic Outcomes in Children with Asthma
    He, Linchen
    Norris, Christina
    Cui, Xiaoxing
    Li, Zhen
    Barkjohn, Karoline K.
    Brehmer, Collin
    Teng, Yanbo
    Fang, Lin
    Lin, Lili
    Wang, Qian
    Zhou, Xiaojian
    Hong, Jianguo
    Li, Feng
    Zhang, Yinping
    Schauer, James J.
    Black, Marilyn
    Bergin, Michael H.
    Zhang, Junfeng Jim
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (05) : 3101 - 3111
  • [22] Impact of meteorology and aerosol sources on PM2.5 and oxidative potential variability and levels in China
    Liu, Jiemei
    Christensen, Jesper H.
    Ye, Zhuyun
    Dong, Shikui
    Geels, Camilla
    Brandt, Jorgen
    Nenes, Athanasios
    Yuan, Yuan
    Im, Ulas
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2024, 24 (18) : 10849 - 10867
  • [23] Seasonal variation of driving factors of ambient PM2.5 oxidative potential in Shenzhen, China
    Xing, Chunbo
    Wang, Yixiang
    Yang, Xin
    Zeng, Yaling
    Zhai, Jinghao
    Cai, Baohua
    Zhang, Antai
    Fu, Tzung-May
    Zhu, Lei
    Li, Ying
    Wang, Xinming
    Zhang, Yanli
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 862
  • [24] Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China
    Liu, Qingyang
    Lu, Zhaojie
    Xiong, Ying
    Huang, Fan
    Zhou, Jiabin
    Schauer, James J.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 701
  • [25] Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China
    Jun Tao
    Tiantao Cheng
    Renjian Zhang
    Junji Cao
    Lihua Zhu
    Qiyuan Wang
    Lei Luo
    Leiming Zhang
    Advances in Atmospheric Sciences, 2013, 30 : 1070 - 1084
  • [26] Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China
    Tao Jun
    Cheng Tiantao
    Zhang Renjian
    Cao Junji
    Zhu Lihua
    Wang Qiyuan
    Luo Lei
    Zhang Leiming
    ADVANCES IN ATMOSPHERIC SCIENCES, 2013, 30 (04) : 1070 - 1084
  • [27] Chemical Composition of PM2.5 at an Urban Site of Chengdu in Southwestern China
    陶俊
    成天涛
    张仁健
    曹军骥
    朱李华
    王启元
    罗磊
    张雷鸣
    AdvancesinAtmosphericSciences, 2013, 30 (04) : 1070 - 1084
  • [28] Seasonal Variation in the Chemical Composition and Oxidative Potential of PM2.5
    Vinson, Alex
    Sidwell, Allie
    Black, Oscar
    Roper, Courtney
    ATMOSPHERE, 2020, 11 (10)
  • [29] Household PM2.5 in a South African urban and rural setting: A comparative analysis using low-cost sensors
    Benyon, Matthew
    Kwatala, Ngwako
    Laban, Tracey
    Kapwata, Thandi
    Batini, Chiara
    Cai, Samuel
    Micklesfield, Lisa K.
    Panchal, Rikesh
    Kunene, Siyathemba
    Zondo, Sizwe B.
    Language, Brigitte
    Wernecke, Bianca
    Hazelhurst, Scott
    Gomez-Olive, F. Xavier
    Vande Hey, Joshua
    Wright, Caradee Y.
    ATMOSPHERIC POLLUTION RESEARCH, 2025, 16 (05)
  • [30] Characterization and source apportionment of oxidative potential of ambient PM2.5 in Nanjing, a megacity of Eastern China
    Zhang, Lu
    Hu, Xin
    Chen, Sisi
    Chen, Yijun
    Lian, Hong-Zhen
    ENVIRONMENTAL POLLUTANTS AND BIOAVAILABILITY, 2023, 35 (01)