Linear programming with Triangular Intuitionistic Fuzzy Number

被引:0
作者
Dubey, Dipti [1 ]
Mehra, Aparna [1 ]
机构
[1] Indian Inst Technol, Dept Math, New Delhi 110016, India
来源
PROCEEDINGS OF THE 7TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-2011) AND LFA-2011 | 2011年
关键词
Triangular intuitionistic fuzzy number; Fuzzy linear programming; Ranking method; MULTIATTRIBUTE DECISION-MAKING; REASONABLE PROPERTIES; RANKING METHOD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an approach based on value and ambiguity indexes defined in [1] to solve linear programming problems with data as triangular intuitionistic fuzzy numbers.
引用
收藏
页码:563 / 569
页数:7
相关论文
共 26 条
[1]  
Abbasbandy S, 2009, PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, P642
[2]  
[Anonymous], 2003, EUSFLAT C
[3]  
[Anonymous], 2005, FUZZY MATH PROGRAMMI
[4]   INTERVAL VALUED INTUITIONISTIC FUZZY-SETS [J].
ATANASSOV, K ;
GARGOV, G .
FUZZY SETS AND SYSTEMS, 1989, 31 (03) :343-349
[5]   INTUITIONISTIC FUZZY-SETS [J].
ATANASSOV, KT .
FUZZY SETS AND SYSTEMS, 1986, 20 (01) :87-96
[6]  
BELLMAN RE, 1970, MANAGE SCI B-APPL, V17, pB141
[7]   Ranking fuzzy numbers with an area between the centroid point and original point [J].
Chu, TC ;
Tsao, CT .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (1-2) :111-117
[8]   On a canonical representation of fuzzy numbers [J].
Delgado, M ;
Vila, MA ;
Voxman, W .
FUZZY SETS AND SYSTEMS, 1998, 93 (01) :125-135
[9]   On the relationship between some extensions of fuzzy set theory [J].
Deschrijver, G ;
Kerre, EE .
FUZZY SETS AND SYSTEMS, 2003, 133 (02) :227-235
[10]   RELATIONSHIPS BETWEEN MODALITY CONSTRAINED PROGRAMMING-PROBLEMS AND VARIOUS FUZZY MATHEMATICAL-PROGRAMMING PROBLEMS [J].
INUIGUCHI, M ;
ICHIHASHI, H ;
KUME, Y .
FUZZY SETS AND SYSTEMS, 1992, 49 (03) :243-259