Polynomial interpolation, an L-function, and pointwise approximation of continuous functions

被引:5
作者
Ganzburg, Michael I. [1 ]
机构
[1] Hampton Univ, Dept Math, Hampton, VA 23668 USA
关键词
Lagrange interpolation; Chebyshev nodes; polynomial approximation; pointwise rapid convergence; L-function;
D O I
10.1016/j.jat.2006.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if {Sk}(k=1)(infinity) is the sequence of all zeros of the L-function L(s, chi) := Sigma(infinity)(k=0)(-1)(k)(2k +1)(-s) satisfying Res(k) epsilon (0, 1), k = 1, 2, then any function from span {vertical bar x vertical bar(sk)}(k=1)(infinity) satisfies the pointwise rapid convergence property, i.e. there exists a sequence of polynomials Q(n) (f, x) of degree at most it such that parallel to f-Q(n) parallel to C vertical bar-1.1(vertical bar) >><= C(f) E-n (f), n = 1, 2,..., and for every x epsilon vertical bar-1, 1 vertical bar, lim(n ->infinity) (vertical bar.f(x)-Q(n) (f.x)vertical bar)/E(n()f)=0 , where E-n (f) is the error of best polynomial approximation of f in C vertical bar -1, 1 vertical bar. The proof is based on Lagrange polynomial interpolation to vertical bar x vertical bar(x), Res > 0, at the Chebyshev nodes. We also establish a new representation for vertical bar L(x, chi)vertical bar. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 30 条
[11]  
GANZBURG MI, 1989, UKRAINIAN MATH J, V41, P1395
[12]  
GANZBURG MI, 1991, UKRAINIAN MATH J, V43, P299
[13]   APPROXIMATION BY POLYNOMIALS WITH LOCALLY GEOMETRIC RATES [J].
IVANOV, KG ;
SAFF, EB ;
TOTIK, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (01) :153-161
[14]  
KADEC MI, 1963, AM MATH SOC TRANSL, V26, P231
[15]   A Hilbert transform representation of the error in Lagrange interpolation [J].
Kubayi, DG ;
Lubinsky, DS .
JOURNAL OF APPROXIMATION THEORY, 2004, 129 (01) :94-100
[16]   Best approximation and interpolation of (1+(ax)2)-1 and its transforms [J].
Lubinsky, DS .
JOURNAL OF APPROXIMATION THEORY, 2003, 125 (01) :106-115
[17]  
Mhaskar HN, 2000, LECT NOTES PURE APPL, V212, P273
[18]  
Mhaskar HN, 1999, INT S NUM M, V131, P165
[19]  
Nazarov F. L., 1994, St. Petersburg Math. J., V5, P663
[20]   SOME THEOREMS ON CEBYSEV APPROXIMATION [J].
NEWMAN, DJ ;
SHAPIRO, HS .
DUKE MATHEMATICAL JOURNAL, 1963, 30 (04) :673-&