Polynomial interpolation, an L-function, and pointwise approximation of continuous functions

被引:5
作者
Ganzburg, Michael I. [1 ]
机构
[1] Hampton Univ, Dept Math, Hampton, VA 23668 USA
关键词
Lagrange interpolation; Chebyshev nodes; polynomial approximation; pointwise rapid convergence; L-function;
D O I
10.1016/j.jat.2006.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if {Sk}(k=1)(infinity) is the sequence of all zeros of the L-function L(s, chi) := Sigma(infinity)(k=0)(-1)(k)(2k +1)(-s) satisfying Res(k) epsilon (0, 1), k = 1, 2, then any function from span {vertical bar x vertical bar(sk)}(k=1)(infinity) satisfies the pointwise rapid convergence property, i.e. there exists a sequence of polynomials Q(n) (f, x) of degree at most it such that parallel to f-Q(n) parallel to C vertical bar-1.1(vertical bar) >><= C(f) E-n (f), n = 1, 2,..., and for every x epsilon vertical bar-1, 1 vertical bar, lim(n ->infinity) (vertical bar.f(x)-Q(n) (f.x)vertical bar)/E(n()f)=0 , where E-n (f) is the error of best polynomial approximation of f in C vertical bar -1, 1 vertical bar. The proof is based on Lagrange polynomial interpolation to vertical bar x vertical bar(x), Res > 0, at the Chebyshev nodes. We also establish a new representation for vertical bar L(x, chi)vertical bar. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 30 条
[1]  
[Anonymous], INTERPOLATION APPROX
[2]  
[Anonymous], 2006, NOT AM MATH SOC
[3]  
Bernstein S., 1914, Acta Mathematica, V37, P1, DOI DOI 10.1007/BF02401828
[4]  
BERNSTEIN S, 1938, B ACAD SCI USSR M, V2, P181
[5]  
BERNSTEIN SN, 1937, EXTRERNAL PROPERTIES
[6]  
BRUDNYI Y, 1997, OPER THEOR, V98, P92
[7]  
GAIER D, 1996, J ANAL-INDIA, V4, P67
[8]   Moduli of smoothness and best approximation of functions with singularities [J].
Ganzburg, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (01) :81-93
[9]   The Bernstein constant and polynomial interpolation at the Chebyshev nodes [J].
Ganzburg, MI .
JOURNAL OF APPROXIMATION THEORY, 2002, 119 (02) :193-213
[10]  
GANZBURG MI, 2004, ADV CONSTRUCTIVE APP, P191