共 31 条
Ground state and multiple solutions for a critical exponent problem
被引:16
作者:
Chen, Z.
[1
]
Shioji, N.
[2
]
Zou, W.
[1
]
机构:
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Yokohama Natl Univ, Dept Math, Fac Engn, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
来源:
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS
|
2012年
/
19卷
/
03期
基金:
日本学术振兴会;
关键词:
NONLINEAR ELLIPTIC PROBLEMS;
CRITICAL DIMENSIONS;
EQUATIONS;
EXISTENCE;
BIFURCATION;
D O I:
10.1007/s00030-011-0127-0
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the following Brezis-Nirenberg type critical exponent equation which is related to the Yamabe problem: -Delta u = lambda u + vertical bar u vertical bar(2*-2)u, u is an element of H-0(1)(Omega), where Omega is a smooth bounded domain in R-N (N >= 3) and 2* is the critical Sobolev exponent. We show that, if N >= 5, this problem has at least inverted right perpendicularN+1/2inverted left perpendicular pairs of nontrivial solutions for each fixed lambda >= lambda(1), where lambda(1) is the first eigenvalue of -Delta with the Dirichlet boundary condition. For N >= 3, we give energy estimates from below for ground state solutions.
引用
收藏
页码:253 / 277
页数:25
相关论文