Ground state and multiple solutions for a critical exponent problem

被引:17
作者
Chen, Z. [1 ]
Shioji, N. [2 ]
Zou, W. [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Yokohama Natl Univ, Dept Math, Fac Engn, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2012年 / 19卷 / 03期
基金
日本学术振兴会;
关键词
NONLINEAR ELLIPTIC PROBLEMS; CRITICAL DIMENSIONS; EQUATIONS; EXISTENCE; BIFURCATION;
D O I
10.1007/s00030-011-0127-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following Brezis-Nirenberg type critical exponent equation which is related to the Yamabe problem: -Delta u = lambda u + vertical bar u vertical bar(2*-2)u, u is an element of H-0(1)(Omega), where Omega is a smooth bounded domain in R-N (N >= 3) and 2* is the critical Sobolev exponent. We show that, if N >= 5, this problem has at least inverted right perpendicularN+1/2inverted left perpendicular pairs of nontrivial solutions for each fixed lambda >= lambda(1), where lambda(1) is the first eigenvalue of -Delta with the Dirichlet boundary condition. For N >= 3, we give energy estimates from below for ground state solutions.
引用
收藏
页码:253 / 277
页数:25
相关论文
共 31 条
[1]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[2]   The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Grunau, Hans-Christoph ;
Sassone, Edoardo .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2) :69-90
[3]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[4]  
Aubin T., 1976, J. Diff. Geom., V11, P573
[5]   CRITICAL EXPONENTS AND MULTIPLE CRITICAL DIMENSIONS FOR POLYHARMONIC OPERATORS [J].
BERNIS, F ;
GRUNAU, HC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (02) :469-486
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[8]   Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :521-537
[9]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[10]  
CERAMI G, 1984, ANN I H POINCARE-AN, V1, P341