Ground state and multiple solutions for a critical exponent problem

被引:16
作者
Chen, Z. [1 ]
Shioji, N. [2 ]
Zou, W. [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Yokohama Natl Univ, Dept Math, Fac Engn, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2012年 / 19卷 / 03期
基金
日本学术振兴会;
关键词
NONLINEAR ELLIPTIC PROBLEMS; CRITICAL DIMENSIONS; EQUATIONS; EXISTENCE; BIFURCATION;
D O I
10.1007/s00030-011-0127-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following Brezis-Nirenberg type critical exponent equation which is related to the Yamabe problem: -Delta u = lambda u + vertical bar u vertical bar(2*-2)u, u is an element of H-0(1)(Omega), where Omega is a smooth bounded domain in R-N (N >= 3) and 2* is the critical Sobolev exponent. We show that, if N >= 5, this problem has at least inverted right perpendicularN+1/2inverted left perpendicular pairs of nontrivial solutions for each fixed lambda >= lambda(1), where lambda(1) is the first eigenvalue of -Delta with the Dirichlet boundary condition. For N >= 3, we give energy estimates from below for ground state solutions.
引用
收藏
页码:253 / 277
页数:25
相关论文
共 31 条