Deep Convolutional Neural Network for Ultrasound Image Enhancement

被引:0
作者
Perdios, Dimitris [1 ]
Vonlanthen, Manuel [1 ]
Besson, Adrien [1 ]
Martinez, Florian [1 ]
Arditi, Marcel [1 ]
Thiran, Jean-Philippe [1 ,2 ,3 ]
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS5, Lausanne, Switzerland
[2] Univ Hosp Ctr CHUV, Dept Radiol, Lausanne, Switzerland
[3] Univ Lausanne UNIL, Lausanne, Switzerland
来源
2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2018年
关键词
Image enhancement; ultrasound imaging; image processing; deep learning; INVERSE PROBLEM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of improving image quality in ultrafast ultrasound (US) imaging by means of regularized iterative algorithms has raised a vast interest in the US community. These approaches usually rely on standard image processing priors, such as wavelet sparsity, which are of limited efficacy in the context of US imaging. Moreover, the high computational complexity of iterative approaches make them difficult to deploy in real-time applications. We propose an approach which relies on a convolutional neural network trained exclusively on a simulated dataset for the purpose of improving images reconstructed from a single plane wave (PW) insonification. We provide extensive results on numerical and in vivo data from the plane wave imaging challenge (PICMUS). We show that the proposed approach can be applied in real-time settings, with an increase in contrast-to-noise ratio of more than 8.4 dB and an improvement of the lateral resolution by at least 25 %.
引用
收藏
页数:4
相关论文
共 9 条
[1]   Ultrafast Ultrasound Imaging as an Inverse Problem: Matrix-Free Sparse Image Reconstruction [J].
Besson, Adrien ;
Perdios, Dimitris ;
Martinez, Florian ;
Chen, Zhouye ;
Carrillo, Rafael E. ;
Arditi, Marcel ;
Wiaux, Yves ;
Thiran, Jean-Philippe .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (03) :339-355
[2]   A Model and Regularization Scheme for Ultrasonic Beamforming Clutter Reduction [J].
Byram, Brett ;
Dei, Kazuyuki ;
Tierney, Jaime ;
Dumont, Douglas .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2015, 62 (11) :1913-1927
[3]   High-Quality Plane Wave Compounding Using Convolutional Neural Networks [J].
Gasse, Maxime ;
Millioz, Fabien ;
Roux, Emmanuel ;
Garcia, Damien ;
Liebgott, Herve ;
Friboulet, Denis .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2017, 64 (10) :1637-1639
[4]   Deep Convolutional Neural Network for Inverse Problems in Imaging [J].
Jin, Kyong Hwan ;
McCann, Michael T. ;
Froustey, Emmanuel ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) :4509-4522
[5]   Plane-Wave Imaging Challenge in Medical Ultrasound [J].
Liebgott, H. ;
Rodriguez-Molares, A. ;
Cervenansky, F. ;
Jensen, J. A. ;
Bernard, O. .
2016 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2016,
[6]  
Luchies Adam C, 2018, IEEE Trans Med Imaging, V37, P2010, DOI [10.1109/ULTSYM.2017.8091878, 10.1109/TMI.2018.2809641]
[7]   Inverse Problem of Ultrasound Beamforming With Sparsity Constraints and Regularization [J].
Ozkan, Ece ;
Vishnevsky, Valery ;
Goksel, Orcun .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (03) :356-365
[8]  
Tanter M, 2014, IEEE T ULTRASON FERR, V61, P102, DOI [10.1109/TUFFC.2014.6689779, 10.1109/TUFFC.2014.2882]
[9]  
Vedula S., 2017, CT QUALITY ULTRASOUN, P1