Existence of periodic orbits of stable saturated systems

被引:6
作者
Moreno, I
Suárez, R
机构
[1] Inst Mexicano Petr, Programa Invest Matemat Aplicadas & Computac Eje, Mexico City 07730, DF, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Math, Mexico City 09340, DF, Mexico
关键词
dynamical systems; piecewise linear systems; bounded control; periodic orbits;
D O I
10.1016/j.sysconle.2003.09.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The saturation of linear controllers produces the undesirable existence of equilibrium points or periodic orbits of the closed-loop system. This typical nonlinear behavior has been observed in real systems or by means of simulation of certain examples. However, there are only a few studies in which the properties of saturated systems have been examined rigorously and, a proof of the existence of periodic orbits created by the saturation of the controller is lacking. In this paper we choose an example of an open-loop stable linear control system with an stabilizing saturated linear feedback to prove rigorously the existence of a periodic orbit. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:293 / 309
页数:17
相关论文
共 50 条
  • [41] Periodic orbits for fuzzy flows
    Ceeconello, M. S.
    Bassanezi, R. C.
    Brandao, A. V.
    Leite, J.
    FUZZY SETS AND SYSTEMS, 2013, 230 : 21 - 38
  • [42] One family of 13315 stable periodic orbits of non-hierarchical unequal-mass triple systems
    XiaoMing Li
    XiaoChen Li
    ShiJun Liao
    Science China Physics, Mechanics & Astronomy, 2021, 64
  • [43] One family of 13315 stable periodic orbits of non-hierarchical unequal-mass triple systems
    Li, XiaoMing
    Li, XiaoChen
    Liao, ShiJun
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (01)
  • [44] A proof of Culter's theorem on the existence of periodic orbits in polygonal outer billiards
    Tabachnikov, Serge
    GEOMETRIAE DEDICATA, 2007, 129 (01) : 83 - 87
  • [45] A proof of Culter’s theorem on the existence of periodic orbits in polygonal outer billiards
    Serge Tabachnikov
    Geometriae Dedicata, 2007, 129 : 83 - 87
  • [46] Some remarks on the abundance of stable periodic orbits inside homoclinic lobes
    Simo, C.
    Vieiro, A.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (24) : 1936 - 1953
  • [47] PERIODIC ORBITS AND INVARIANT CONES IN THREE-DIMENSIONAL PIECEWISE LINEAR SYSTEMS
    Carmona, Victoriano
    Freire, Emilio
    Fernandez-Garcia, Soledad
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) : 59 - 72
  • [48] Invariant manifolds of periodic orbits for piecewise linear three-dimensional systems
    Carmona, V
    Freire, E
    Ponce, E
    Torres, F
    IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (01) : 71 - 91
  • [49] Generic Properties of Koopman Eigenfunctions for Stable Fixed Points and Periodic Orbits
    Kvalheim, Matthew D.
    Hong, David
    Revzen, Shai
    IFAC PAPERSONLINE, 2021, 54 (09): : 267 - 272
  • [50] Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems
    Vrahatis, MN
    Perdiou, AE
    Kalantonis, VS
    Perdios, EA
    Papadakis, K
    Prosmiti, R
    Farantos, SC
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 138 (01) : 53 - 68