Existence of periodic orbits of stable saturated systems

被引:6
作者
Moreno, I
Suárez, R
机构
[1] Inst Mexicano Petr, Programa Invest Matemat Aplicadas & Computac Eje, Mexico City 07730, DF, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Math, Mexico City 09340, DF, Mexico
关键词
dynamical systems; piecewise linear systems; bounded control; periodic orbits;
D O I
10.1016/j.sysconle.2003.09.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The saturation of linear controllers produces the undesirable existence of equilibrium points or periodic orbits of the closed-loop system. This typical nonlinear behavior has been observed in real systems or by means of simulation of certain examples. However, there are only a few studies in which the properties of saturated systems have been examined rigorously and, a proof of the existence of periodic orbits created by the saturation of the controller is lacking. In this paper we choose an example of an open-loop stable linear control system with an stabilizing saturated linear feedback to prove rigorously the existence of a periodic orbit. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:293 / 309
页数:17
相关论文
共 50 条
  • [31] Lotka-Volterra Systems with Periodic Orbits
    Kobayashi, Manami
    Suzuki, Takashi
    Yamada, Yoshio
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (01): : 129 - 155
  • [32] On the continuation of degenerate periodic orbits in Hamiltonian systems
    Meletlidou, E
    Stagika, G
    REGULAR & CHAOTIC DYNAMICS, 2006, 11 (01) : 131 - 138
  • [33] Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency
    Zheng, Bo
    Yu, Jianshe
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 212 - 224
  • [34] CONVERSE LYAPUNOV FUNCTIONS FOR EXPONENTIALLY STABLE PERIODIC-ORBITS
    HAUSER, J
    CHUNG, CC
    SYSTEMS & CONTROL LETTERS, 1994, 23 (01) : 27 - 34
  • [35] Stable periodic orbits for spacecraft around minor celestial bodies
    Yu Jiang
    Jürgen Arno Schmidt
    Hengnian Li
    Xiaodong Liu
    Yue Yang
    Astrodynamics, 2018, 2 (1) : 69 - 86
  • [36] No periodic orbits for the type A Bianchi’s systems
    Claudio A. Buzzi
    Jaume Llibre
    Journal of Nonlinear Mathematical Physics, 2015, 22 : 170 - 179
  • [37] On periodic orbits and resonance in extrasolar planetary systems
    Hadjidemetriou, John D.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 102 (1-3) : 69 - 82
  • [38] Stable periodic orbits for spacecraft around minor celestial bodies
    Jiang, Yu
    Schmidt, Juergen Arno
    Li, Hengnian
    Liu, Xiaodong
    Yang, Yue
    ASTRODYNAMICS, 2018, 2 (01) : 69 - 86
  • [39] On the existence and stability of periodic orbits in non ideal problems: General results
    Dantas, Marcio Jose Horta
    Balthazar, Jose Manoel
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (06): : 940 - 958
  • [40] On the existence and stability of periodic orbits in non ideal problems: General results
    Márcio José Horta Dantas
    José Manoel Balthazar
    Zeitschrift für angewandte Mathematik und Physik, 2007, 58 : 940 - 958