Power-law behavior in a cascade process with stopping events: A solvable model

被引:11
|
作者
Yamamoto, Ken [1 ]
Yamazaki, Yoshihiro [1 ]
机构
[1] Waseda Univ, Dept Phys, Shinjuku Ku, Tokyo 169, Japan
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 01期
基金
日本学术振兴会;
关键词
FRAGMENTATION; TRANSITION; FRACTURE;
D O I
10.1103/PhysRevE.85.011145
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The present paper proposes a stochastic model to be solved analytically, and a power-law-like distribution is derived. This model is formulated based on a cascade fracture with the additional effect that each fragment at each stage of a cascade ceases fracture with a certain probability. When the probability is constant, the exponent of the power-law cumulative distribution lies between -1 and 0, depending not only on the probability but the distribution of fracture points. Whereas, when the probability depends on the size of a fragment, the exponent is less than -1, irrespective of the distribution of fracture points. The applicability of our model is also discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Power-law Schell-model sources
    Hyde, Milo W.
    OPTICS COMMUNICATIONS, 2017, 403 : 312 - 316
  • [32] A BAG MODEL WITH A POWER-LAW CONFINING POTENTIAL
    BOGOLYUBOV, PN
    DOROKHOV, AE
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1982, 36 (04): : 561 - 564
  • [33] Reduced Order Model for a Power-Law Fluid
    Ocana, M.
    Alonso, D.
    Velazquez, A.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (07):
  • [34] A power-law model for nonlinear phonon hydrodynamics
    Sciacca, Michele
    Jou, David
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (02):
  • [35] Model selection for identifying power-law scaling
    Ton, Robert
    Daffertshofer, Andreas
    NEUROIMAGE, 2016, 136 : 215 - 226
  • [36] GOODNESS-OF-FIT TESTS FOR THE POWER-LAW PROCESS
    PARK, WJ
    KIM, YG
    IEEE TRANSACTIONS ON RELIABILITY, 1992, 41 (01) : 107 - 111
  • [37] Confidence intervals for the scale parameter of the power-law process
    Gaudoin, Olivier
    Yang, Bo
    Xie, Min
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (08) : 1525 - 1538
  • [38] Statistical Inference for Power-Law Process With Competing Risks
    Somboonsavatdee, Anupap
    Sen, Ananda
    TECHNOMETRICS, 2015, 57 (01) : 112 - 122
  • [39] The generalized power-law: A new viscosity model
    Rodrigue, Dennis
    XVTH INTERNATIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY 80TH ANNUAL MEETING, PTS 1 AND 2, 2008, 1027 : 1441 - 1443
  • [40] A generative power-law search tree model
    Carvalho, Alda
    Crato, Nuno
    Gomes, Carla
    COMPUTERS & OPERATIONS RESEARCH, 2009, 36 (08) : 2376 - 2386