Some patching results on algebras over two-dimensional factorial domains

被引:3
作者
Dutta, Amartya K. [2 ]
Gupta, Neena [2 ]
Onoda, Nobuharu [1 ]
机构
[1] Univ Fukui, Dept Math, Fukui 9108507, Japan
[2] Indian Stat Inst, Stat Math Unit, Kolkata 700108, India
关键词
D O I
10.1016/j.jpaa.2012.01.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = k[x, y] be the polynomial ring in two variables over a field k. We investigate the structure and properties of R-algebras A which are obtained as A = A(x) boolean AND A(y) where A(x) and A(y) are polynomial algebras in one variable over R-x and R-y respectively. Most of our results hold when R is a two-dimensional UFD and x, y is an R-regular sequence generating a maximal ideal of R. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1667 / 1679
页数:13
相关论文
共 7 条
[1]   Kernel of locally nilpotent R-derivations of R[X,Y] [J].
Bhatwadekar, SM ;
Dutta, AK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (08) :3303-3319
[2]   A counterexample to Hilbert's Fourteenth Problem in dimension 5 [J].
Daigle, D ;
Freudenburg, G .
JOURNAL OF ALGEBRA, 1999, 221 (02) :528-535
[3]  
Dutta AK, 2005, CONTEMP MATH, V390, P85
[4]   Some results on codimension-one A1-fibrations [J].
Dutta, Amartya K. ;
Onoda, Nobuharu .
JOURNAL OF ALGEBRA, 2007, 313 (02) :905-921
[5]  
Fossum R.M., 1973, Springer Ergebnisse, V74
[6]  
Kaplansky I., 1970, COMMUTATIVE RINGS, px+180
[7]  
Onoda Nobuharu, 1984, Jpn. J. Math. New Ser., V10, P29