Automatic Re-orientation of 3D Echocardiographic Images in Virtual Reality Using Deep Learning

被引:0
作者
Munroe, Lindsay [1 ]
Sajith, Gina [1 ]
Lin, Ei [1 ]
Bhattacharya, Surjava [1 ]
Pushparajah, Kuberan [1 ,2 ]
Simpson, John [1 ,2 ]
Schnabel, Julia A. [1 ]
Wheeler, Gavin [1 ]
Gomez, Alberto [1 ]
Deng, Shujie [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Guys & St Thomas Natl Hlth Serv Fdn Trust, Evelina London Childrens Hosp, Dept Congenital Heart Dis, London, England
来源
MEDICAL IMAGE UNDERSTANDING AND ANALYSIS (MIUA 2021) | 2021年 / 12722卷
基金
英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
3D echocardiography; Deep learning; Virtual reality;
D O I
10.1007/978-3-030-80432-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In 3D echocardiography (3D echo), the image orientation varies depending on the position and direction of the transducer during examination. As a result, when reviewing images the user must initially identify anatomical landmarks to understand image orientation - a potentially challenging and time-consuming task. We automated this initial step by training a deep residual neural network (ResNet) to predict the rotation required to re-orient an image to the standard apical four-chamber view). Three data pre-processing strategies were explored: 2D, 2.5D and 3D. Three different loss function strategies were investigated: classification of discrete integer angles, regression with mean absolute angle error loss, and regression with geodesic loss. We then integrated the model into a virtual reality application and aligned the re-oriented 3D echo images with a standard anatomical heart model. The deep learning strategy with the highest accuracy - 2.5D classification of discrete integer angles - achieved a mean absolute angle error on the test set of 9.0 degrees. This work demonstrates the potential of artificial intelligence to support visualisation and interaction in virtual reality.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 18 条
  • [1] [Anonymous], 2018, Br J Cardiol, V25, P63
  • [2] Balduzzi D, 2017, PR MACH LEARN RES, V70
  • [3] CREATIS Lab.-France, CETUS DAT
  • [4] Congenital Heart Defects in Europe Prevalence and Perinatal Mortality, 2000 to 2005
    Dolk, Helen
    Loane, Maria
    Garne, Ester
    [J]. CIRCULATION, 2011, 123 (08) : 841 - U46
  • [5] Gomez A., 2021, ARXIV PREPRINT ARXIV
  • [6] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [7] Komodakis N., 2018, ICLR
  • [8] Three-dimensional printing in congenital heart disease: A systematic review
    Lau, Ivan
    Sun, Zhonghua
    [J]. JOURNAL OF MEDICAL RADIATION SCIENCES, 2018, 65 (03) : 226 - 236
  • [9] Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography
    Leclerc, Sarah
    Smistad, Erik
    Pedrosa, Joao
    Ostvik, Andreas
    Cervenansky, Frederic
    Espinosa, Florian
    Espeland, Torvald
    Berg, Erik Andreas Rye
    Jodoin, Pierre-Marc
    Grenier, Thomas
    Lartizien, Carole
    D'hooge, Jan
    Lovstakken, Lasse
    Bernard, Olivier
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) : 2198 - 2210
  • [10] 3D Pose Regression using Convolutional Neural Networks
    Mahendran, Siddharth
    Ali, Haider
    Vidal, Rene
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2174 - 2182