Predicting the lung compliance of mechanically ventilated patients via statistical modeling

被引:2
作者
Ganzert, Steven [1 ]
Kramer, Stefan [1 ]
Guttmann, Josef [2 ]
机构
[1] Tech Univ Munich, Inst Informat I12, D-85748 Garching, Germany
[2] Univ Med Ctr Freiburg, Div Anesthesiol & Crit Care Med, D-79106 Freiburg, Germany
关键词
mechanical ventilation; ventilator associated lung injury (VALI); lung-protective ventilation; acute respiratory distress syndrome (ARDS); machine learning; Gaussian process modeling; PRESSURE-VOLUME CURVES;
D O I
10.1088/0967-3334/33/3/345
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
To avoid ventilator associated lung injury (VALI) during mechanical ventilation, the ventilator is adjusted with reference to the volume distensibility or 'compliance' of the lung. For lung-protective ventilation, the lung should be inflated at its maximum compliance, i.e. when during inspiration a maximal intrapulmonary volume change is achieved by a minimal change of pressure. To accomplish this, one of the main parameters is the adjusted positive end-expiratory pressure (PEEP). As changing the ventilator settings usually produces an effect on patient's lung mechanics with a considerable time delay, the prediction of the compliance change associated with a planned change of PEEP could assist the physician at the bedside. This study introduces a machine learning approach to predict the nonlinear lung compliance for the individual patient by Gaussian processes, a probabilistic modeling technique. Experiments are based on time series data obtained from patients suffering from acute respiratory distress syndrome (ARDS). With a high hit ratio of up to 93%, the learned models could predict whether an increase/decrease of PEEP would lead to an increase/decrease of the compliance. However, the prediction of the complete pressure-volume relation for an individual patient has to be improved. We conclude that the approach is well suitable for the given problem domain but that an individualized feature selection should be applied for a precise prediction of individual pressure-volume curves.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 50 条
[31]   Postural lung recruitment assessed by lung ultrasound in mechanically ventilated children [J].
Tusman G. ;
Acosta C.M. ;
Böhm S.H. ;
Waldmann A.D. ;
Ferrando C. ;
Marquez M.P. ;
Sipmann F.S. .
Critical Ultrasound Journal, 2017, 9 (1)
[32]   Prognostic Value of the Radiographic Assessment of Lung Edema Score in Mechanically Ventilated ICU Patients [J].
Filippini, Daan F. L. ;
Hagens, Laura A. ;
Heijnen, Nanon F. L. ;
Zimatore, Claudio ;
Atmowihardjo, Leila N. ;
Schnabel, Ronny M. ;
Schultz, Marcus J. ;
Bergmans, Dennis C. J. J. ;
Bos, Lieuwe D. J. ;
Smit, Marry R. .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (04)
[33]   Effects of routine postural repositioning on the distribution of lung ventilation and perfusion in mechanically ventilated patients [J].
Rodriguez Huerta, Maria Dolores ;
Sanchez Giralt, Juan Antonio ;
Diez-Fernandez, Ana ;
Rodriguez Alonso, Maria Jesus ;
Montes, Nuria ;
Suarez-Sipmann, Fernando .
INTENSIVE AND CRITICAL CARE NURSING, 2025, 87
[34]   Lung response to prone positioning in mechanically-ventilated patients with COVID-19 [J].
Protti, Alessandro ;
Santini, Alessandro ;
Pennati, Francesca ;
Chiurazzi, Chiara ;
Ferrari, Michele ;
Iapichino, Giacomo E. ;
Carenzo, Luca ;
Dalla Corte, Francesca ;
Lanza, Ezio ;
Martinetti, Nicolo ;
Aliverti, Andrea ;
Cecconi, Maurizio .
CRITICAL CARE, 2022, 26 (01)
[35]   Lung response to prone positioning in mechanically-ventilated patients with COVID-19 [J].
Alessandro Protti ;
Alessandro Santini ;
Francesca Pennati ;
Chiara Chiurazzi ;
Michele Ferrari ;
Giacomo E. Iapichino ;
Luca Carenzo ;
Francesca Dalla Corte ;
Ezio Lanza ;
Nicolò Martinetti ;
Andrea Aliverti ;
Maurizio Cecconi .
Critical Care, 26
[36]   Determinants of point-of-care ultrasound lung sliding amplitude in mechanically ventilated patients [J].
David N. Briganti ;
Christine E. Choi ;
Julien Nguyen ;
Charles W. Lanks .
The Ultrasound Journal, 15
[37]   Nurses' Attitude, Behavior, and Knowledge Regarding Protective Lung Strategies of Mechanically Ventilated Patients [J].
Asmar, Imad T. ;
Alrajoub, Belal M. ;
Almahmoud, Omar H. ;
Nakhleh, Dina N. ;
Makharzeh, Sara I. ;
Falaneh, Yazeed M. .
CRITICAL CARE NURSING QUARTERLY, 2020, 43 (03) :274-285
[38]   Determinants of point-of-care ultrasound lung sliding amplitude in mechanically ventilated patients [J].
Briganti, David N. ;
Choi, Christine E. ;
Nguyen, Julien ;
Lanks, Charles W. .
ULTRASOUND JOURNAL, 2023, 15 (01)
[39]   Predicting mechanically ventilated patients future respiratory system elastance-A stochastic modelling approach [J].
Ang, Christopher Yew Shuen ;
Chiew, Yeong Shiong ;
Wang, Xin ;
Nor, Mohd Basri Mat ;
Cove, Matthew E. ;
Chase, J. Geoffrey .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
[40]   Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung [J].
Ganzert, Steven ;
Guttmann, Josef ;
Steinmann, Daniel ;
Kramer, Stefan .
DISCOVERY SCIENCE, DS 2010, 2010, 6332 :296-310